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Abstract

In this paper, a generalized non-Markovian bulk
arrival service queueing system is considered with
multiple vacations, setup times and closedown time.
The service starts only if minimum of ‘a’ customers are
available in the queue. At the service completion epoch,

if the number of customers is &, where a<& <d-1 (d<b)

then the server takes the entire queue for batch service
and admits the subsequent arrivals for service till the
service of the current batch is over, or the accessible
limit d is reached, whichever occurs first. At the service
initiation epoch, if the number of customers waiting in

the queue &’ is atleast ‘d’ (a<d<b), then the server

takes min(&,b) customers for service and does not

allow further arrival into the batch. On completion of a
service, if the queue length is less than ‘a’, then the
server performs a closedown work such as, shutting
down the machine, removing the tools etc. Following
closedown work, the server leaves for a vacation of
random length irrespective of queue length. When the
server returns for a vacation and if the queue length is
still less than ‘a’, he leaves for another vacation and so
on until he finds atleast ‘a’ customers waiting for
service in the queue. That is, if the server finds atleast
‘N’ customers waiting for service, then he requires a
setup time ‘R’ to start the service. After the setup he
serves a batch of ‘b’ customers, where b>a. Various
characteristics of queueing system and a cost model
are presented.

Keywords: Markovian Bulk, Multiple Vacation, Setup
time, Accessible Batches and Closedown times.

1. Introduction

Many researchers have concentrated on bulk service
queueing models, in which once the service is started
arriving customers, can not enter the service station
though enough space is available to accommodate
them. It can be observed in many practical situations
that arriving customers will be considered for service
with current batch in service with some restriction. The
concept of non accessibility while receiving service,
has been studied by Weiss[6], Sivasamy[7] analyzed a
Markovian single arrival bulk service queue with
accessible and non accessible  batches. R.
Arumuganathan and S. Jeyakumar[1] had given results
for setup times with N-Policy. Sharma and Jain[8]
obtained results for average queue length and waiting
time distribution for state dependent Markovian single
arrivl bulk service queueing system with accessible and
non accessible batches. Sharma et al.[9] established the
expression for average queue length for state dependent
Mx/M(a,d,b)/1 queue with accessible and non
accessible batches without vacations. In the literature,
only less attention is given for general because of the
complexity in getting a closed form solution.

In this paper, a generalized non-Markovian bulk
arrival service queueing system is considered with
multiple vacations, setup times and closedown time.
The service starts only if minimum of ‘a’ customers are
available in the queue. At the service completion
epoch, if the number of customers is & ,where a<& <d-

1 (d<b) then the server takes the entire queue for batch

www.ijert.org

586



IJERTV 21570255

service and admits the subsequent arrivals for service
till the service of the current batch is over, or the
accessible limit d is reached, whichever occurs first. At
the service initiation epoch, if the number of customers

waiting in the queue ¢ £ is atleast ‘d’ (a<d<b), then the
server takes min( & ,b) customers for service and does

not allow further arrival into the batch. On completion
of a service, if the queue length is less than ‘a’, then the
server performs a closedown work such as, shutting
down the machine, removing the tools etc. Following
closedown work, the server leaves for a vacation of
random length irrespective of queue length. When the
server returns for a vacation and if the queue length is
still less than ‘a’, he leaves for another vacation and so
on until he finds atleast ‘a’ customers waiting for
service in the queue. That is, if the server finds atleast
‘N’ customers waiting for service, then he requires a
setup time ‘R’ to start the service. After the setup he
serves a batch of ‘b’ customers, where b>a.

v Q=>a

Service

A 4

Accessibilitya<n<d-1

Non-Accessibilityd <n<b

Q<a
y

|
Closedown work

\ 4
Multiple Vacations [« Q<a

Q=>a

\ 4
Setup job

Fig 1: Schematic Representation of Queueing Model

For the proposed model, the probability
generating function of the number of customers in the
queue at an arbitrary time epoch is obtained using
supplementary variable technique. The complexity of
general service accessible batch queueing system
involving LST of unknown probability functions is
overcome by providing a recursive epoch. Expression
for expected queue length, expected length of idle
period, expected length of busy period and expected
waiting time are derived. A cost model of the queueing
system is discussed.
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2. Mathematical model

Let X be the group size random variable, A be the
Poisson arrival rate, gx be the probability that ‘k’
customers arrive in a batch and X(z) be its probability
generating function. Let S(.),V(.), R(.) and C(.) be the
cumulative distributions of the service time, vacation
time, setup time and closedown time, respectively. Let
s(x), v(x), r(x) and c(x) be the probability density
functions of service time, vacation time, setup time and
closedown time respectively. S%(t), V°(t), R%(t) and
C°(t) denote the remaining service tine of a batch, the
remaining vacation time, setup time and closedown
time of a server at an arbitrary time t, respectively. Let
us denote the Laplace transform (LT)of s(x), v(x), r(x)

andc(x)as S,V , Rand C respectively.

The number of customers in the queue and the
number of customers in service are denoted by Nj(t),
Nq(t), respectively. The different states of the server at
time ‘t” are defined as follows:

Y(t) = 0, if the server is busy with bulk service
=1, if the server is doing closedown work
=2, if the server is on vacation
and define Z(t) = j, if the server is on j™ vacation
starting from the idle period.

To obtain system equations, the following
probabilities are defined. Let
Pii(x,t)dt = P{Ns(t)=i, No(t)=j, x<S°(t)<x+dt, Y(t)=0},
a<i<b, j>0,
which means that there are i customers under service, j
customers in the queue, the server is busy with
remaining service time of x.

In a similar manner, it is defined,
Calx,t)dt = P{Ng(ty=n, x<C°()<x+Hdt, Y(1)=1},

n>0,

Qin(x.H)dt = P{Ng(t)=n, x<V(H)<x+dt, Y(1)=2, Z(t)=j},
n>0, j>1,

Ra(x,)dt = P{Ny(t)=n, x<R(t)<x+dt, Y(t)=1},
n>N

3. Analysis

The steady state queue size equations are obtained as

=P ==2Py (0 + P (0050 + Y. Qu(0)s(9)

+2F’ifk,o(x)ﬂgk, a<i<d S Q)
k=1
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R0 =Ry + 3P (00

+|Zi:Q“(0)s(x), d+1<i<b - (2)

—P, (X) =—AP, (X) + kZ;‘ Py n (X)A0,
+ Py o (902G, 121 ~®

P, () =~4P, (0 + 3R, (07,
d <ki:1< b-1n>1 —(4)

=R 00 = <R 0+ X Pryn (00509 + D00 (00509

n

+;Pb,n_k(x)ﬂgk, n>1 —(5)
)=+ OIS )
~C, (0 =-2C, () + 2 P (OC(X)

+anllCn_k(X)ﬂgk, l<n<a-1  —(7)
~C,(00=-2C,(0+ Y.C, (VMg Nza ()
~QUo0 =209 GOV 5
~ Q4 () = ~2Q,, (%) +C, (OV()

+ anlen_k (x)Ag,, n>1 —(10)
Q= AQ () +Q OV, (22 (D

~Q;u () ==2Q;,(x) +Q;1,, (OV(x)

+2Qj,n—k(x);i~gk| 1SnSa—1,j22 _)(12)
k=1

Q) (X) =—4Q, () + ;. (0,

n>a,j>2 — (13)
CRY(X) =R, (0 + 320, (0K + 3 R, 4 (X)2.
n>N 5 (14)

Taking LT on both sides of the equations (1)-
(14), we get
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0P ()~ Po(0) = 2P (6) - Y- P (03(6) - X Qu(05(0)

o

_“pifkvo(e)ﬁgk, a<i<d - (15)
OFa(6)=Rol0)= 4 (6)- 3P 050
—Ifl:Q"(O)g(H), d+1<i<h - (16)
0P (0) Pu0)= 2P (0) -2 Py (0110,
_dkl B, 0(0)2g,.,, n=1 - (Q17)
6B, (6)- P, (0)= 4P, (6)- Y B, , (6)g.
d<i<b—kin21 5 (18)

OB (0) Py = 2P (6)= 3. Prys (05(6) -2 Q1 OIS 6)

5b,n—k (e)ﬂgk , N >1

- - (19)

n
k=1

0C, (6)~Co(0) = AC, (6)— 3 Py (OC(0)

m=a

—(20)
6C,(6)-C,(0) = 15, (6)- 3P, O (6)

_ZGH_k(Q)lgk, 1<n<a-1 _)(21)
k=1

0C,(0)-C,(0)=1C,0)- Y, . (0)2g,,

n>a —(22)
0Qu(0)~Qu(0) = 1Qu(0) -Co OV (0), > (23)
0Qu (6)~Qu (0) = 4Q,,(6) ~C, (O (6)
30 @, nzl 5@
061.0 ) _Qjo 0)= l@jo 0)- Qj—l,o (0)\7(9),
j>2 —5(25)

0Q,,(6) - Q,,(0) = 2Q,, (6) ~Q,,, (OV ()

‘zéj,nfk(ﬁ)lgk, 1<n<a-1j>2-—(26)
k=1

03,(0)-Qu0=1Q,()-3.3,,.(0)a,.

nxa j=2 —(27)
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{

OR, (6)-R,(0)= R, (0) - in,n (OR() —H_Z R, (0)A9;.

n>N —(28)

4. Queue Size Distribution

To obtain the probability generating function of the
queue size at an arbitrary time epoch, the following
probability generating functions are defined.

[F?(z,e) > P, (0)2"

)

P(z,00=>'P.(0)z), d<i<b

ij

'M8 E,Méé

I
o

]

Q,(z,0) = Zan(H)Z”

8

Q,(z,0)=>.Q,,(0)z", j=1 — (29)
C(2.0)=3C, ()"
C(z0)=3C,(0)2"

R(z.6)= Y R,(0)2"
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\R(20)= 3R, (0)2"

Multiplying the equation (23) by z° and (24) by z"
(n > 1) taking summation from n=0 to o and using
(29), we get

-4+ AX (z))él(z, 0)=Q,(z,0) ~V(0)C(z,0) —(30)

Multiplying the equation (25) by z° , (26) by z"
(1 <n<a-1) and (27) by z" (n > a) taking summation
from n=0 to o and using (29), we get

(0 2+ X (2))Q,(2,6) = Q, (2,0) -
VO30, @D
Multiplying the equation (20) by z° , (21) by Z"

(1 <n<a-l) and (22) by z" (n > a) taking summation
from n=0 to o and using (29), we get
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(0— 4+ X (2))C(z,0) =C(z,0) -

6(9)& P (0)z" +az_1ipmn (O)z”} —(32)

n=1 m=d

Multiplying the equation (15) by z° with i=d, (17) by z"
(n > 1) and taking summation from n=0 to o and using
(29), we get

(0~ 2+ X (2))P,(2,0) = P, (2,00~ S (e)ﬁ Ps(0)+>Q <0>}

2’ d-1 __
T d
i=a

Po(0)2' *[X(2)-G,(z)] — (33)

N

d-1-i
where G;(2)= Z gk
Multiplying the equation (16) by z°, (18) by z" (n > 1)

and taking summation from n=0 to c and using (29),
we get

(0- 1+ X ()P (2.0) = B (2.0)-§ (@{i P (0+3Q, <0)}
d+1<i<b-1 —(34)
Multiplying the equation (16) by z° with i=b, (19) by 2"

(n > 1) and taking summation from n=0 to co and using
(29), we get

6- /1+/1X(z))P(Z 0) =P, (z,0) - 8(9)

i(Pm (ZIO) _Z I:’mn (O)an
+§[Q. (z,O)—io.nw)z"j

— (35)

Multiplying the equation (28) by z° (n > 1) and taking
summation from n=0 to co and usmg (29), we get

(60— 2+ X (2)R(z,0) = R(z,0) - R(6)

{Z(Ql(z 0)- ZQ.n(O)z H — (36)

1=1

Substituting @ = A4 —AX(z) in (30) through (36), we
get

Q,(2,0) =V (A - AX (2))C(z,0) — (37)
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G20 =V(- X107 >

Z 0)z° +

C(20)=C(A-X ()" - (39)

3P (0)+3Q (0)

m=d 1=1

P, (2,0)=S(1-AX (z)){

iddZ: (A—AX(2))2' *[X(2) - G, (2)] = (40)

d-1-i

where G(z)= Z 0, z
k=

P(20)=S M—M(z»[ipmi ©+3Q, (0)}
d+1<i<b-1 —(41)

bipm(zo inP (0)z°
R,(20)=| S(A-AX(2)| ™ e
+2Q(20)-3,3.Q0 (0
1

* = — (42)
2° —S(1—X(2))

R(20) = ﬁ(ﬂ—ﬂX(z»{i(Ql 29-3 Q. <0)z“}»(43)

From the equations (30) and (37), we get

V(44X (2) -V (0))C(2.0)
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V(22X (2) -V (9))
30,1, 07
0+ X (2)

Q,(z,6)= } j>2 —(45)

From the equations (32) and (39), we get

5(2,9)—(5(/1 X (2))-C(2,0))

Seaor+ |

m-a L SN T
02+ X(z)

a-1

b
ZZF’mn 2"

n=0

From the equations (33) and (40), we get

[(S(A-2X(2))-S(0) ]

{Z P (0) + ind (0)}

P(z.0) ="
+ZidZI5i0(/1—/IX(z))z‘

*[X(2)-Gi(2)]
S SN
0— A+ X (z)

From the equations (34) and (41), we get

S0~ X ()-8 (9)){2 Pu(0)+2Q, <0)}

0— A+ AX(2)
d+1<i<h-1 —(48)

IS;(ZIQ):

From the equations (35) and (42), we get

2,0 44
Qz.0)= 0+ 7X(z) — 4
From the equations (31) and (38), we get
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[(S(A-2X(2))-S(0) ] (SGA-X@)-D) ]
b-1 b b1 b
- 0| P03 SR, 0 oS0
b\ % m=d m= doonzli)_1 Pd (Z,O) m=d N
+ZQ.(Z 0) ZZQ.n 0)z" idzﬁ (1 X (2))Z
) 1 L [X()-6,(2)]
b_S(A—AX(2))(O -1+ AX(2)) w1 5 (54)
— A+ X(2)
From the equations (36) and (43), we get _ b "
_ (S(A-4X(2)) —1){2 P, (0)+>.Q (0)}
_ _ PI (Z,O) — m=d 1=1
[R(A-AX(2))-R(O)] —A+AX(2)
d+1<i<b-1 —(55)
>Qeo-So.0r
R(z,0) = 611 X() — (50) [(S(A-AX(2)-1)
Substituting 6=0, in equations (44) through (50), we get R (z,0) = Z Fn(z.0)- Z::dz(; P ()" ||
o bh-1
N +3Q0-3 30,01
= (V(A-AX(2)-1)C(2.0) AN s |
Q. (z,0)= A+ X — (51) _ 1 s (56)
2° —S (A - AX (2))(=A + X (2))
V(22X (2)) -1 [R(2- X (2))-1]
) 50,00 {z Q@0-YQ, <0)z"}
(2,00= n=0 i>2 52 5 _ 1 n=0
N B I R(0)= A+ X(2) >0
Let P(z) be the probability generating function of the
dz 0)2° + queue size at an arbitrary time epoch. Then,
C(2.0)=(C(a-x(2)-1) = bm
ZOmZ;F’mn(O)Z P(2)= ZP(O)+P(20)+ $B.(2.0)+ B, (20)
i=d+1
— - (53) +C(z 0)+ZQ.(z 0)+R(z,0) — (58)
—A+X(2) 0+2.9, :
Using the equation (51) through (57) in (58), we get
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(S(A-X(2)-D) b
{ P, (0)+2Q.d(0)} ﬁ 2P0
iddz‘, (h— X (2))z QiZIZ:l:Qli(O),
I x@s@ | nh
(Z)_lza o (0)+ — A+ AX(2) W(S~,Z)=Z|:~’io(0),
#(5.2) = zl(P.o(z 2X(2) - Py (0)2 (X (2) - G, (2)

+,;1 XD f(S,2)=S(4- AX(2))c,

L G(-2X(2) 1){ZP (0)+iQ.i(0)} <

+ A SR M@ (X -6,@) (60
[(S(A-2X(2))-1)

b b + Zsa—zxa))cm
ZP (z0)->.> P, (02" m-¢+1 .
e V(A= IX@)C(A- X (@)Y P,2"
+ZQ (z,0) - ZZan(O)Z n=0

+\7(/1 —/IX(z))aiqnz” —bicnzn
wz,O) = (2" - S(2 - 2X(2)))R(2,0)

S5 (- X (D) (A + X (D)

~ Pao (0)2° + Using the equation (60) and (59) is simplified as
(C(/i—/IX(z))—l e
: 220" -5 X @)+ XD ED) ]
— A+ X (2) +A(Z° =S (A= X (2)4(S,2)

L V(2= 2X(@)-1)C(20) +(S(A=AX(2))-1) £ (S,2)+(V (1- X (2))

— A+ AX(2) E(A—/iX(z))—l)(az_anz”)
V (2= X (2)) - 1) (2" =S (A-2X (2))) + (V (A~ X (2)) -1)
S0, 00 @ -5 X @)Y,
X (2) P X O S0x@)

+U(z,0) — (61)

In  P(z) functions \|/(S~,z) ,¢(§,z)and
— (59) f(§,z)which involve LST of the unknown

functions P,,(0) are present. While modelling a

non- accessible batch service queue, such
complexity will not occur. In order to resolve

[R(A-X(2))-1]
{i(@.(z,O)—NZ_lQ.H <0)z"}
n =1 n=0

(—1+ X (2))

Let
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this complexity, I5i0(6?) are expressed in terms of

known function S ).

4. Expected length of Idle Period.

Expected Idle Period can be defined as the
mean time gap between the completion epoch of a
service and initiation epoch of the next service,
inclusive of multiple vacations and closedown period.
Let | be the random variable idle period. The expected
length of idle period is given by E(1)=E(1,)+E(C) where
I, is the random variable denoting idle period due to
multiple vacation process and E(C) is the expected
closedown time.

Let U be the random variable defined by
U =] 0, if the server finds at least ‘a’ customers after
the first vacation
1, if the server finds less that ‘a’ customers after

the first vacation

then, using conditional expectation, the expected length
of idle period E(1,) is given by

E(l,) = E(1,/U=0)P(U=0)+ E(I,/U=1)P(U=1)
= E(V)P(U=0)+(E(V)+E(1,))P(U=1)

Where E(V) is the mean vacation time. Solving for
E(1), we get
E(l) = E(V)/[1-P(U=1)] = E(V)/[P(U=0)]  —>(62)

To find P(U=0), we do some algebra in the equations
(29) and (37) we get

Q(20)= Y Q.0

=V (4 - X (Z)){C‘(A —/”LX(z))ai p,z"

:[ianz“J{iﬂjzji pnz”}

equating the coefficient of z" (n=0,1,2,....,a-1) on both
sides, we get

|
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an (0) = z

n
i=0

PU=0=1-30,0

Lni ajﬁn—i—j J pn

j=0

where a;, f3; are the probabilities of ‘i’ customers arrive
during vacation and closedown time. Using (62) and
(63), the expected idle period E(l) is obtained as

E(1) = —— EEV) +E(C)
S
+E(R) > (64)

5. Expected length of Busy Period

In this section, the expected length of busy period
which is useful to find the overall cost of the system is
derived. Using the conditional expectation concept, the
expected length of busy period is derived as follows:

Busy period is defined as the time interval from the
moment when the server starts serving the queue, after
returning from a vacation until the server leaves the
system for another vacation.

Let B be the random variable for ‘busy period’.
Define another random variable J as

J=0, if the server finds less than ‘a’ customers in the
queue
after first service
1, if the server finds atleast ‘a’ customers in the
queue
after first service

Now the expected length of busy period E(B) is
E(B) = E(B/J=0)P(J=0)+E(B/J=1)P(J=1)

= E(B/J=0)P(J=0)+(E(B)+E(S))P(J=1)
= E(B/J=0)P(J=0)+(E(B)+E(S))(1-P(J=0))

Where E(S) is expected service time. Solving for E(B),
E(B) = E(S)/P(J=0)
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a-1
=E(S) )R —(65)
i=0
is obtained.

6. Expected Queue Length
The expected queue length E(Q) (i.e., average number
of customers waiting in the queue) at an arbitrary time

epoch is obtained by differentiating p(z) at z=1 and is

given by E(Q):Z:npn = p*(1). From the equation

n=0
(61) using L’Hospital’s rules and evaluating the limit,
: (2)
lim, , —"—=, we get

0" [k1-12*k2]
+ 2 2 2

4X, 81X/ (b-S,)

+[(ﬂbxl)k3—|<4]
2(2X,%)

a-1 a-1
[2X,(2v, ) ng, +V,».q,)
n=0 n=0

E(Q)=

~(X )M 2.0,)
2(12X,%)

— (65)

where

K1 = {4\X1(b-S1)H{2S,.£+3S: £’}
k2 = (S1.£)[( AX1)(b(b-1)-So)+( AC:Xo)(b-S1)]
a-1
K3={(2V1C+V+C))( D P, J+(Vi+Cy)
n=0

a-1 a-1
(NP, +V+C)( D Py )}
n=0 n=0

a-1
K4={(V:+C1)( X, Py JXo)}
n=0
Sl=7»X1E(S)
S,= AXGE(S)+ APX4E(S?)
X1=E(X)
X=X""(1)
V1: leE(V)
V= AXGE(V)+ A2X4E(VD)
C]_: }\,X]_E(C)
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Cy= AX,E(C)+A2X4E(C?)
7. Expected waiting time

The expected waiting time is obtained by using the
Little’s formula as E(W)=E(Q)/AE(X), where E(Q) is
expected queue length as in (65).

8. Cost Model

Cost Analysis is an important phenomenon in any
system. In this section, the total average coast of the
queueing system is derived with the following
assumptions.

C, : Start up cost per cycle.

Cs, : Holding cost per customer per unit time
Co : Operating cost per unit time

C; : Reward due to vacation per unit time
C, : Closedown cost per unit time.

The length of cycle is the sum of the idle period and

busy period. From the equations(63) and (64), the
expected length of cycle, E(T,) is obtained as

E(T,)=E(1)+E(B)

- a-1 n En(V) +E(C)
1_2 s (Zajﬂnlj]pn

+E(R) +? — (66)

Z P
P

The total average cost per unit is given by
Total average cost = start up cost per cycle
+ holding cost of number of
customers in
the queue
+ operating cost*p
+ closedown time cost
+ setup cost per cycle
- reward due to vacation per unit
Time
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_~ EV)
* "PWU=0)
+C,E(C)+C,E(R)
Total average cost =
E(T.)
+C,E(Q)+Cyp —(67)

Where p = ME(X)E(S)/b and E(T,),E(Q) are given in
(66) and (65) respectively

9. References

[1] R.Arumuganathan and S.Jeyakumar (2005): Steady
state analysis of a bulk queueing with multiple
vacations, setup times with N-Poilcy and closedown
times, Applied Mathematical Modelling 29 pp 972-986.

[2]Kendal, D G (1951):Some problems in the theory of
queues, J.Roy.Statist.Soc B13,pp 1511-185.

[3]Cox, D R (1955):The analysis of non-markovian
stochastic process by the inclusion of supplementary
variables, Proc.Camphil.SOC.51 pp 433-441.

[4]Cox, D R and Miller H D (1965): The theory of
stochastic processes, section 4, wiley, New York.

[5]Lee, H W and Lee, S S(1991): A batch arrival queue
with different vacations, Comput and oper." Res.,
Vol.18, No.1,pp51-58.

[6]Weiss, H J (1979): The computation of optimal
control limits for a queue with batch service, Mgmt.
Sci., Vol.25, pp 137-142.

[7]Sivasamy, R.(1990): A bulk service queue with
accessible and non accessible batches, opsearch,
Vol.27, pp 957-967.

[8]Sharma, G C and Jain, M.(1991): State dependent
bulk queueing system with accessible and non
accessible batches, Proc. Of ORSI, New Delhi,pp113.

[9]Sharma, G C., Sharma, R and
Jain(2002):M*/M(a,d,b)/1 queue with state dependent
bulk service of accessible and non accessible batches,
Operations Researach, IT and Industry, Y K
Publishers, New Delhi.

[10]Arumuganathan,R and Jeykumar,S.(2004):
Analysis of a bulk queue with multiple vacations and
closedown times, Int.J.Informatiion and Mgmt. Sci,
Vol.15, No.1,pp 45-60.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

[11]Gross, D and Harris, C.M.(1998): Fundamentals of
queueing theory, John Wiley & Sons, New York.

[12]Kelinrock, L.(1975): Queueing systems.Vol.l
Theory, John Wiley, New York.

[13]Medhi, J.(2002):Stochastic Models in Queueing
Theory, Second edition, Academic press, USA

[14]Ross,Sheldon,M(2001): Introduction to
probabilistic models, Seventh edition, Academic Press.

[15]Saaty, T.L.(1961):Elements of queueing theory
with applications, Mc Graw Hill Book CO., New York.

[16]Kishore S Trivedi, “Probability and Statistics with
reliability, Queueing, and Computer Science
Applications,” Prentice-Hall of India, 1982.

www.ijert.org 595



