
Steady State Performance Characteristics of 

Isoviscous Finite Flexible Oil Journal Bearings
 

Including Fluid Inertia Effect
 

 
K.C Ghosh1,             S.K.Mazumder2,           M.C.Majumdar3 

Professor,      Professor,                        Professor, 

Department of  Mechanical Engineering,         Department of Mechanical Engineering     Department of Mechanical Engineering 

    DR. B.C Roy Engineering College,                   DR. B.C Roy Engineering College                     NIT,Durgapur, 

      Durgapur, West Bengal, India        Durgapur, West Bengal, India                  West Bengal,India 

 
 

Abstract: The aim of this work is to analyse the steady state on 

performance characteristics of hydrodynamic journal bearing 

including combined effect of bearing liner surface deformation 

and fluid-inertia. The average Reynolds equation that modified 

to include the fluid inertia effect and surface deformation is 

used to obtain pressure field in the fluid-film. The solutions of 

modified average Reynolds equations are obtained using finite 

difference method and appropriate iterative schemes. The 

effects of surface deformation factor and modified Reynold’s 

number on circumferential fluid-film pressure distribution, 

load carrying capacity, attitude angle, and end flow of the 

bearing are studied for various eccentricity ratio, slenderness 

ratio, Poisson ratios, and liner thickness to radius ratio. The 

steady state bearing performance analysis is done through 

parametric study of the various variables like modified 

Reynolds number, eccentricity ratio, slenderness ratio, attitude 

angle, surface deformation factor. The variation of bearing load 

carrying capacity, attitude angle, end flow, friction parameters 

has been studied and plotted against various parameters. 

 

Keyword- Modified Reynolds number, slenderness ratio, attitude 

angle, sommerfeld number, eccentricity ratio, journal bearings, 

inertia, and deformation factor. 

I  INTRODUCTION 

The fluid inertia effect cannot be neglected when the viscous 

and the inertia forces are of the same order of magnitude 

shown by Pinkus and Sterlincht [1], though the basic 

assumptions in the classical hydrodynamic theory include 

negligible fluid inertia forces in comparison to the viscous 

forces. In recent times synthetic lubricants, low viscosity 

lubricants, are used in industries and owing to high velocity 

it is possible to arrive at such a situation where flow is 

laminar but the fluid inertia effect cannot be neglected. In 

such cases  the classical Reynolds equation is not valid. 

Keeping in view of the above, consideration of inertia effect 

of a lubricant flow may be one of the areas of recent 

extension of the classical lubrication theory. Among the few 

studies related to effect fluid inertia effect, Constatinescu and 

Galetuse [2] evaluated the momentum equations for laminar 

and turbulent flows by assuming the velocity profiles is not 

strongly affected by the inertia forces. Banerjee et.al [3] 

introduced an extended form of Reynolds equation to include 

the effect of fluid inertia, adopting an iteration scheme. Chen 

and Chen [5] obtained the steady-state characteristics of 

finite bearings including inertia effect using the formulation 

of Banerjee et al.[3]. Kakoty and Majumdar [4, 13] used the 

method of averaged inertia in which inertia terms are 

integrated over the film thickness to account for the inertia 

effect in their studies. The above studies were mainly based 

on ideally smooth rigid bearing surfaces. 

 

When the fluid-film thickness in a journal bearing 

system is of the order of few micrometres, the bearing 

surface is not rigid, rather deformable,  then surface 

deformation due to elastic distortion has a profound effect on 

bearing performance. In the present study it has been 

consider that the journal bearing is a cylindrical sleeve 

bearing made of comparatively soft material than shaft 

material and a rigid circular shaft rotates inside. The bearing 

liner is actually a thin tube surrounded by a relatively rigid 

housing. Since the periphery of the bearing is much larger 

than its thickness the radial deformation of the latter at a 

point may be assumed to be proportional to the pressure at 

that point. Elastic deformation of the journal and the bearing 

material by hydrodynamic fluid pressure changes the fluid 

film profile, modifies the pressure distribution and therefore 

changes the performance characteristics of the journal 

bearings. 

 

Theoretical research on flexible (soft shell) bearings with a 

rigid rotor was started with the work of Higginson [6] using 

a simplified method (the distortion is proportional to the 

pressure). Since then many workers notably Hooke, 

Brighton, and O'Donoghue [7-9], Conway and Lee [11], and 

Oh and Huebner [12] solved the journal bearing problem 

considering the effect of elastic distortions of the bearing 

liner. 

 

In the present work, a modified average Reynolds equation 

and a solution algorithm are developed to include fluid 

inertia and bearing sleeve surface deformation effects in the 

analysis of lubrication problems. The developed model is 

being used to study the influence of fluid inertia and surface 

deformation effects on the steady state characteristics such as 

circumferential pressure, load carrying capacity, attitude 

angle and side leakage of a hydrodynamic oil journal 

bearing. 
 

II  BASIC THEORY 

The modified average Reynolds equation for fully lubricated 

surfaces is derived starting from the Navier-Stokes equations 

and the continuity equation with few assumptions. The non-

dimensional form of the momentum equations and the 

continuity equation for a journal bearing may be written as 

(Figure.1) 
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Figure.1 The schematic diagram of oil Journal Bearing 
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The fluid film thickness in the case of flexible bearing can be 

written as  

   cosech                                                       (5)     
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where   is the elastic deformation of the bearing surface and 

it is a function of  and z . 

 

Here the variation in the density with time is considered to 

be negligible. The momentum equations may be presented in 

the following form using equation of continuity. However, 

the second momentum equation is not used any further 

because there is no variation in pressure across the film. 

After Constantinescu and Galetuse [ 2 ] the velocity 

components are approximated by the parabolic profiles. The 

velocity components may be expressed in non-dimensional 

form as follows:  
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Q  and zQ are dimensionless flow parameter in   and 

_

z direction respectively. 

Substituting these two into momentum equations and 

integrating give 
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From continuity equation one can obtain the following form 

of modified Reynold’s equation in rotating coordinate 

system  
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The modified Reynold’s equation under steady state 

condition neglecting all time derivatives can be written as  
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Boundary conditions for equation (14) are as follows  

1. The pressure at the ends of the bearing is assumed to be 

zero (ambient):  
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3. Cavitation boundary condition is given by: 
 

2102
0 0,0, 






















 


forzpandz
p

T

he equation (14) along with the equations (15) to (19) are 

first expressed in finite difference form and solved using 

Gauss-Siedel method in a finite difference scheme.  

Before trying to find the solution of equation (14) satisfying 

the appropriate boundary conditions, the elastic deformation 

0 is obtained in the following way: 

 

The method is similar to that of Brighton et.al [8,9] and also 

Majumder et al. [7].In the present calculation the three 

displacement components u, v, and w are solved 

simultaneously satisfying the boundary conditions. 

The oil film pressure between the shaft and the bearing can 

be expressed in a double Fourier series of the form as 

indicated by Brighton et.al [8,9] and Majumder et.al., [7] 
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2

L

, dzdp
L

p
                       (23) 

The first term of the right-hand side of equation (20) is
0,0

2

1
p . 

Using the end condition of the bearing (i,e 0p at 
2

L
z  ) we 

can obtain 
00 ,p . This term does not contribute any 

deformation at 
2

L
z . Its effect for the other values of z is 

included in the total deformation. The boundary conditions 

of the inner radius are  

0,0,  zrrr p  
                     (24) 

After non-dimensionalisation, the equation (21), (22) and 

(23) becomes  

2

1

2
2

0

1

0

2
2

0

1

0

,

sincos

coscos
2







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
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

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
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0

1
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2

0

1
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,
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nm

                 (26) 

and     
 










2

0

1

0

00

1
zddpp

,
                       (27) 

where ,
R

cp
p n,m

n,m 2

0

2





   ,

R

cp
p

2

0

2






2
L

z
z 
    

The outer surface of the bearing is rigidly enclosed by the 

housing, preventing any displacement of the outer surface. 

The ends of the bearing are prevented from expanding 

axially, but are free to move circumferentially or radially.   
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The displacement components in ,r and z directions are 

found from the pressure distribution, which has been 

expressed in a Fourier series. It is apparent that the 

displacements will also be harmonic functions. 

These displacements were substituted in the stress-strain 

relationships using Lame's constants. The six components of 

stresses were then used in the equations of equilibrium to 

obtain the following three displacement equations. 

   
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Where,  



2*C   &   

L

rm
k i2
  

The boundary conditions are, at 1
_

y , 

 








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


y

v

y
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vd ***

                (32)           

  ku

yd

wd *
*




                        (33) 

and at  ,
a

b
y 


       

0***  wvu                   (34) 

The equations (28), (29) and (30) expressed first in finite 

difference form solving the displacement equations with the 

boundary conditions (31 to 34) the values of the distortion 

coefficient 
n,md were obtained and  expressed as, 

pR

u
d nm

*

,


                      (35) 

The radial deformation 
0 of the bearing surface will be 

u0  

or,  
L

zm
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pR
d nminm







2
coscos ,

0

,0     

Considering the bearing clearance is very small in compare 

to the diameter of the journal, the total radial deformation 

will be  
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


, 2Lz 


 and   is replaced by 

 12

E ,  

the radial deformation in the  inner surface will be in the 

form, 
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                                 00,n,m   

In steady condition radial deformation in the inner surface 

may be written as, 
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                           0,0, nm  

Where  
c

0
0


 


 &  
3

3

0

cE

R
F


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III   METHOD OF SOLUTION 

A. Steady-State Analysis.  

To find out steady-state pressure all the time derivatives are 

set equal to zero and the non-dimensionalised all equations  

(14) to (19) and also equations (25) to (30) and equation (37) 

are written in finite difference form along with all required 

boundary conditions to proceed for calculation. For 

2.00  the pressure distribution and flow parameters 

Q and zQ  are evaluated from inertia less ( 0Re*  ) 

solution, i.e., solving classical Reynold’s equation. These 

values are then used as initial value of flow parameters to 

solve Eqs.(18) and (19) simultaneously for Q and 

zQ Using Gauss-Siedel method in a finite difference 

scheme. Then updated xI  and zI  and then calculate Q and 

zQ for use to solve Eq.(14) with initial zero surface 

deformation for new pressure 

_

p  with inertia effect by using 

a successive over relaxation scheme. The latest values of  

Q and zQ and 

_

p  are used iteratively to solve the set of 

equations until all variables converges using a finite-

difference method (Gauss-Seidel) with successive over 

relaxation scheme. The convergence criterion adopted for 

pressure is 5
__

101 















  oldnew

pp and also same 
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criterion for Q and zQ ..  The distribution was expressed as 

a double Fourier series as given by equation (20). The 

deformation equation (37) was then calculated for a given 

F using distortion coefficients from equation (35) after 

calculating displacement components solving equations (28), 

(29), and (30) using boundary conditions (31) to (35). The 

film thickness equation was then modified using equation 

(17). The fluid film pressure was again obtained from 

equation (14) simultaneously with equation (15), (16) and 

equation (18) and (19) and then get modified film shape. The 

process was repeated until a compatible film shape and 

pressure distribution was determined.  

 

For higher eccentricity ratios ( 2.00  ) the initial values for 

the variables are taken from the results corresponding to the 

previous eccentricity ratios. Very small increment in  is to 

be provided as *Re increases. The procedure converges up to 

a value of 5.1Re*  which should be good enough for the 

present study. 

Since the bearing is symmetrical about its central plane 

(

_

z =0),only one half of the bearing needs to be considered 

for the analysis, Once the pressure distribution is evaluated 

fluid film forces and the load bearing capacity 

_

oW  and 

attitude angle (φ) are calculated  

 

B. Steady State Fluid Film Forces.  

The non-dimensional fluid film forces along line of centres 

and perpendicular to the line of centres are given by  

_1

0

_

0

_

cos
2

1

0
zddpFr 





                                           (39) 

_1

0

_

0

_

sin
2

1

0
zddpF 





                                                (40) 

Where, 
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2
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where 1  and 2  are angular coordinates at which the fluid 

film commences and cavitates respectively. 

  

 

C. Steady-State Load and Attitude Angle.  

 

The steady state non-dimensional load and attitude angle are 

given by  


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0 00 FFW r
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r

o

F

F
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Since the steady state film pressure distribution has been 

obtained at all the mesh points, integration of equations (39) 

and (40) can be easily performed numerically by using 

Simpson’s 1/ 3 rd. rule to get rF


 and 



F . The teady state 

load 0



W  and the attitude angle  0  are calculated using 

equations (41) and (42). 
 

The present theoretical study has been done considering 

combine effect of fluid Inertia effects and bearing surface 

deformation The results have been compared with available 

data of researchers.  

 

IV   RESULTS AND DISCUSSION 

The present steady state results (considering only fluid 

inertia effect)  are compared to the results of Kakoty et.al., 

[4] and  Chen & Chen [5] (for 0.1DL ) as given in Table 

3. These three results are in good agreement 

Table 1:  Comparison of Steady -state characteristics of a oil 

journal bearings for 0.1DL , 0.0F  i.e,  with 

considering Inertia Effect only 

 

The steady-state results are compared to the results of 

Kakoty & Majumder [4] Chen and Chen [5] for 

0.1DL and 0.0F  as given in Table 1. These two 

results are in good agreement. A slight increase in load 

capacity with modified Reynolds number 


eR is observed in 

the present study. In the present study it is observed that the 

attitude angle increases slightly for eccentricity ratio 0.2, 

whereas the attitude angle reduces slightly for eccentricity 

ratio 0.8 & 0.9. 

 

Re* ε 
_

0W  

_

0W  

_

0W  
0  

 

0  

 

0  

 

  
Present Kakoty 

Chen-

Chen 
Present Kakoty 

Chen-

Chen 

0 0.2 0.499 0.504 0.501 77.377 73.71 73.90 

 
0.5 1.728 1.790 1.779 58.847 56.64 56.80 

 
0.8 7.046 7.459 7.1460 36.641 34.66 36.20 

 
0.9 16.91 17.714 16.982 26.370 23.90 26.40 

  
 

  
 

  
0.28 0.2 0.494 0.5055 0.504 77.427 73.75 74.20 

 
0.5 1.734 1.7980 1.7850 58.460 56.72 57.00 

 
0.8 7.101 7.4837 7.1510 36.543 34.72 36.30 

 
0.9 17.05 17.761 16.993 26.365 23.93 26.40 

  
 

  
 

  
0.56 0.2 0.495 0.5070 0.505 77.538 73.79 74.50 

 
0.5 1.740 1.8058 1.790 58.674 56.79 57.20 

 
0.8 7.156 7.5081 7.159 36.446 34.78 36.40 

 
0.9 17.094 17.809 17.00 26.36.1 23.97 26.40 

  
 

  
 

  
1.4 0.2 0.508 0.5112 0.508 77.622 73.95 75.30 

 
0.5 1.7562 1.830 1.587 56.893 57.05 58.00 

 
0.8 7.3172 7.585 7.187 36.149 35.02 36.70 

 
0.9 17.359 ------ 17.03 26.339 ---- 26.60 
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Table 2. Comparison of maximum steady state pressure 

obtained by the present method to that of Brighton et.al [ 9] 

and Majumder, Brewe et.al [ 7 ] 

[ 0.1DL , 85.00  , 3.0RH , 4.0 ] 

 

Deformation 

factor, F 

P max 

(Present) 

P max 

(Brighton) 

P max 

(Majumder) 

0.0 18.2231 16.8 17.25 

0.05 14.9515 14.10 13.5 

0.1 12.4542 11.40 11.5 

0.2 8.8761 8.7 9,0 

0.4 5.8980 6.3 6.25 

 

It may be seen that the peak pressure decreases with increase 

in the elasticity parameter / deformation factor.  
 

In Table 2 the comparison of maximum centreline pressures 

in the circumferential direction of the present solution for a 

finite bearing with 0.1DL , 85.00  , and for values of 

F  varying from 0 to 0.4 with those of reference [7, 9] are 

shown. 
 

 
 

Figure 2 shows the steady-state load capacity variation with 

elasticity parameter for seven eccentricity ratios (i.e., 

2.00  , 0.3, 0.5, 0.6, 0.7, 0.8, 0.9). Although there is little 

variation of load with F  at low eccentricity ratios, the load 

drops very sharply with F at 9.00  . The increase in F  

increases the minimum film thickness as shown in fig. 3. 

This in effect reduces the true eccentricity ratio, therefore 

pressures and load capacity drop. It may be mentioned that a 

similar observation has been made by Conway and Lee [11] 

while analyzing a flexible bearing using the short bearing 

approximation 

 

 

 
 

 
Figure 4 shows the steady-state attitude angle variation with 

elasticity parameter for seven eccentricity ratios (i.e., 

2.00  , 0.3, 0.5, 0.6, 0.7, 0.8, 0.9). The increasing trend of 

the variation of attitude angle with F is observed 

 

 
 

Figure 5 shows the steady-state Load carrying capacity 

variation with elasticity parameter for different slenderness 

ratio (i.e., 0.2,0.1,5.0DL ). Although there is little 

variation of load with F at low slenderness ratios, the load 

drops very sharply with F  at 0.2DL  
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Figure 6 shows the steady-state Load carrying capacity 

variation with elasticity parameter for different modified 

Reynold’s number (i.e., ,0.0


eR  0.56, 1.4). The load 

drops very sharply with F .  The load carrying capacity 

increases as modified Reynold’s number increases. 

 

 
 

Figure 7 shows the steady-state Load carrying capacity 

variation with elasticity parameter for different RH ratio. 

The load drops very sharply with F .  The load carrying 

capacity increases as RH ratio decreases. 

 
 

Figure 8 shows the steady-state Load carrying capacity 

variation with elasticity parameter for different poisson ratio. 

The load drops very sharply with F .  The load carrying 

capacity increases as Poisson ratio increases. 

 

 
 

Figure 9 shows the steady-state End flow variation with 

elasticity parameter for different Eccentricity ratio. The End 

flow increases marginally at higher eccentricity ratio 

8.00  but at low eccentricity ratio the variation is almost 

constant with F .   

V  CONCLUSIONS 

1. The region of load carrying capacity decreases as the 

bearing liner is made more flexible for high eccentricity 

ratios 

(i.e., 7.00  ). For 7.00  , the flexibility of the bearing 

liner had little or no effect on stability. 

2. As L/D is increased, distortion effects are more prominent. 

This leads to a decrease in load carrying capacity. 

3. The hydrodynamic pressure and hence the load capacity is 

reduced as the bearing liner becomes more flexible, 

especially at eccentricities greater than 0.8. 

4. As the Reynolds number increases the load carrying 

capacity increases but drop when bearing liner is made more 

flexible 

5. As the Poisson ratio increases the load carrying capacity 

increases but drop sharply when bearing liner is made more 

flexible. 

6. As the liner thickness to radius ratio increases the load 

carrying capacity decreases but drop when bearing liner is 

made more flexible 
 

NOMENCLATURE 

 

ira   Inner radius of the bearing liner  [ m  ] 

0rb  Outer radius of the bearing liner [ m  ] 

c  Radial clearance [ m  ] 

R  Journal radius [ m ] 

D  Journal diameter [ m  ] 

n,md  Distortion coefficient of n,m harmonic 

nm,  
 

Axial and circumferential harmonics             
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e  Eccentricity [ m ] 

0e  Steady state eccentricity [ m ] 

E  Young’s modulus [ 2m/N ] 

F  Elasticity parameter or deformation factor,      

rF


 
Nondimensional fluid film force along the line of 

centers 





F  
Nondimensional fluid film force perpendicular the 

line of centres 

00 



F,F r  
 

Non-dimensional steady state fluid film forces  

h  Oil film thickness [ m ] 

0h  Steady state oil film thickness [ m ] 



0h  

 

Non-dimensional steady state oil film thickness 

H  Thickness of bearing liner  [ m ] 

J  Mechanical equivalent of heat  

L  Length of bearing  [ m ] 

p  Oil film pressure [ Pa ] 

0p  Steady state film pressure [ Pa ] 

0



p  

 

Dimensionless oil pressure 

Q  
End flow of oil [ s/m3

] 



Q  
Nondimensional End flow 



w,v,u  

Components of fluid velocity in the x, y, and z 

direction, respectively. [ s/m ] 

U  Shaft peripheral speed  [ s/m ] 

0W  Steady state load  [ N ] 

0



W  
Dimensionless steady state load 

z,y,x  Circumferential, radial and axial coordinates 



z,y,  
 

Dimensionless coordinates in circumferential, 

radial and axial directions 

0  Viscosity at inlet condition [ Pa  s] 

  
Density [ 

3m/kg ] 

  Poisson’s ratio 

  Eccentricity ratio  

0  
Steady state eccentricity ratio  

  Attitude angle [ rad ] 

0  Steady state attitude angle [ rad ] 

1  Angular coordinates at which the fluid film 

commences [ rad ] 

2  Angular coordinates at which the fluid film 

cavitates [ rad ] 

  Angular velocity of journal [ rad / s] 

 

  Whirl ratio. [ 


 p
 ]                                                                  

tp   Non dimensional time.                      

  Deformation of bearing surface.  [ m  ]            

0  Steady state deformation of bearing surface.  [ m  ]            

0



  
Non-dimensional deformation of bearing surface 

 ,  Lame’s constants 

   eR    =        Reynolds number, 


cR
 

   eR
 =        Modified Reynolds number, 

eR
R

c







  

   Q   =        Dimensionless flow parameter in  direction 

    zQ  =        Dimensionless flow parameter in 

_

z  direction 
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