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Abstract: The stress and poor sleep quality of 

a person may be used as two of several 

components for predicting the onset of mental 

health problems, in particular depression. 

Continuous stress monitoring may help users 

better understand their stress patterns and 

provide physicians with more reliable data for 

interventions. Previously, studies on mental 

stress detection were limited to a laboratory 

environment where participants generally 

rested in a sedentary position. However, it is 

impractical to exclude the effects of physical 

activity while developing a pervasive stress 

monitoring application for everyday use. The 

physiological responses caused by mental 

stress can be masked by variations due to 

physical activity.We present an activity-aware 

mental stress detection scheme. 

Electrocardiogram (ECG), galvanic skin 

response (GSR), and accelerometer data were 

gathered from 20 participants across three 

activities: sitting, standing, and walking. For 

each activity, we gathered baseline 

physiological measurements and 

measurements while users were subjected to 

mental stressors. The activity information 

derived from the accelerometer enabled us to 

achieve 92.4% accuracy of mental stress 

classification for 10-fold cross validation and 

80.9% accuracy for between-subjects 

classification.Ergonomic smart sensors that 

can determine the heart rate variations related 

to stress and the variability of sleep may 

provide unique insights to the coping behavior 

of stressed people. Rather than relying on 

wearable computers, a single smart miniature 

sensor that is worn 24/7 should perform the 

complex embedded recognition tasks while 

meeting difficult battery life, wireless 

communications and ergonomic constraints. 

The development and testing of such a smart 

sensor is described focusing on 

implementation within distributed intelligence 

based architecture. The manner in which the 

user’s heart rate and the user’s physical 

motion is used to measure stress and sleep 

quality is explained. 

Key words: Mental stress, electrocardiogram, 

galvanic skin response, Ergonomic smart 

sensors physical activity, heart rate variability, 

decision tress, Bayes net, support vector 

machine, stress classifier. 

1 INTRODUCTION 

Stress is a physiological response to the 

mental, emotional, or physical challenges that 

we encounter. Immediate threats provoke the 

body's fight or flight" response, or acute stress 

response [5]. The body secretes hormones, 

such as adrenaline, into the bloodstream to 

intensify concentration. There are also many 

physical changes, such as increased heart rate 

and quickened reflexes. Under healthy 
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conditions, the body returns to its normal state 

after dealing with acute stressors. 

Unfortunately, many of the stressors in 

modern life are on-going. Chronic stress can 

be detrimental to both physical and mental 

health. It is a risk factor for hypertension and 

coronary artery disease [22, 12]. Other 

physical disorders, including irritable bowel 

syndrome (IBS), gastroesophageal reflux 

disease (GERD), and back pain, may be 

caused or exacerbated by stress [16]. Chronic 

stress also plays a role in mental illnesses, 

such as generalized anxiety disorder and 

depression [11]. 

Continuous monitoring of an individual's 

stress levels is essential for understanding and 

managing personal stress. A number of 

physiological markers are widely used for 

stress assessment, including: galvanic skin 

response, several features of heart beat 

patterns, blood pressure, and respiration 

activity [31, 15]. Fortunately, miniaturized 

wireless devices are available to monitor these 

physiological markers. By using these devices, 

individuals can closely track changes in their 

vital signs in order to maintain better health. 

Measuring physiological signals during 

everyday activity is more difficult than in a 

rigorous laboratory environment. First, the 

physiological responses caused by mental 

stress can be masked by variations due to 

physical activity [1]. For example, people may 

have higher heart rate when standing than 

when sitting. Heart rate may also increase 

when people are mentally stressed. Hence, 

using 

Heart rate alone as an indicator to detect 

mental stress may lead to misclassification. 

Second, signal artifacts caused by motion, 

electrode placement, or respiratory movement 

affect the accuracy of measured recordings. 

Third, it is also difficult to determine the 

ground truth of a user's stress level when 

labelling training data in mobile environment. 

These factors increase the difficulty of 

developing a pervasive mental stress detection 

application for everyday use. We introduce an 

activity-aware, multi-modal system that 

combines accelerometer, ECG, and GSR 

information to diffierentiate between physical 

activity and mental stress. We conducted a 

user study with 20 participants across three 

different physical activities: sitting, standing, 

and walking. With activity information 

derived from the accelerometer, we achieved 

92.4% accuracy for 10-fold cross validation 

and 80.9% accuracy for between-subject's 

classification. In the next section, we describe 

how we can measure the body's responses to 

mental stress. Next, we discuss prior work on 

stress detection. Section 4 describes our 

experimental protocol and our physiological 

feature extraction and classification methods. 

Experimental results are presented in Section 

7. 

 

2 BACKGROUND 

The autonomic nervous system (ANS) 

regulates the body's major physiological 

activities, including the heart's electrical 

activity, gland secretion, blood pressure, and 

respiration. The ANS has two branches: the 

sympathetic nervous  system (SNS) and the 

parasympathetic nervous system (PNS). The 

SNS mobilizes the body's resources for action 

under stressful conditions. In contrast to the 

SNS, the PNS relaxes the body and stabilizes 

the body into steady state.            

 

2.1 Heart Rate Variability (HRV) and 

Stress 

Under acute stress, the SNS increases heart 

rate, respiration activity, sweat gland activity, 

etc. After the stress has passed, the PNS 

reverses the stress response [17]. Since the 

ANS controls the heart, measuring cardiac 

activity is an ideal, non-invasive means for 

evaluating the state of the ANS. 

An ECG is a recorded tracing of the electrical 

activity generated by the heart. Figure 1 shows 

a P wave, a QRS complex, and a T wave in 

the ECG. The P wave represents atrial 

depolarization, the QRS represents ventricular 

depolarization, and the T wave reflects the 

rapid repolarization of the ventricles [8]. The 

R-R interval is the time interval between two 

R peaks and is used to calculate heart rate. 
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Fig. 1: Electrocardiogram sample Heart rate 

variability (HRV) refers to the beat-to-beat 

variation in the R-R interval. HRV analysis 

can be categorised into time-domain and 

spectral-domain analysis. Several time-domain 

parameters include: 

-mean HR: mean heart rate (beats per minute);  

- mean RR: mean heartbeat interval (ms); 

-SDNN: standard deviation of RR-intervals 

between normal beats; 

-RMSSD: root mean square of the difference 

between successive RR-intervals; 

-pNN50: the percentage of heartbeat intervals 

with a difference in successive heartbeat 

intervals greater than 50 ms. 

Three widely used components can be found 

in HRV power spectrum: 

-LF (0.04-0.15 Hz): a low-frequency 

component that is mediated by both the SNS 

and PNS; 

-HF (0.15-0.4Hz): a high-frequency 

component mediated by the PNS; and 

-LF/HF: LF to HF ratio that is used as an 

index of autonomic balance. 

 

2.2 Galvanic Skin Response (GSR) and 

Stress 

GSR is a measure of the electrical resistance 

of the skin. A transient increase in skin 

conductance is proportional to sweat secretion 

[6]. When an individual is under mental stress, 

sweat gland activity is activated and  increases  

skin conductance. Since  the sweat glands  are  

also  controlled  by  SNS,  skin    conductance 

acts as an indicator for sympathetic activation 

due to the stress reaction. The hands and feet, 

where the density of sweat glands is highest, 

are usually used to measure GSR. There are 

two major components for GSR analysis. Skin 

conductance level (SCL) is a slowly changing 

part of the GSR signal, and it can be computed 

as the mean value of skin conductance over a 

window of data. A fast changing part of the 

GSR signal is called skin conductance 

response (SCR), which occurs in relation to a 

single stimulus. Widely used parameters for 

GSR include the amplitude and latency of 

SCR and average SCL value [2] 

 

 

     Fig 1.  Electrocardiogram sample 

 

3 Methodology: 
In this section, we describe the components of 

the wireless sensor system we used, the 

procedure of the experimental environment, 

and the segmentation of experimental dataset. 

                           

4 Wireless Sensor Network 

We used the SHIMMER platform developed 

by Intel's Digital Health Group. SHIMMER is 

a small wireless sensor platform with an 

integrated 3-axis accelerometer designed to 

support wearable applications. We also used 

SHIMMER's ECG and GSR daughter boards 

for data acquisition. The sensor data from the 

ECG sensor and accelerometer were sampled 

at 100 Hz, and the data from the GSR sensor 

were sampled at 32 Hz. Data were transmitted 

to a PC via Bluetooth connectivity and saved 

to binary and comma-separated value files. 

We used three sensor nodes for the wireless 

sensor network configuration. Photos of the 

sensors are shown in Figure 2. The ECG 

sensor node was strapped to an elastic chest 

belt and three electrodes were placed on the 

body to form lead II and lead III1 recording 

configurations.  

The GSR sensor was attached on a wrist band. 

Then, skin conductance was measured at the 

base of two fingers by measuring the electrical 

current that owed as a result of applying a 

constant voltage. The third sensor node which 

was placed on the waist belt was used to 

collect accelerometer data. 

 

5 DATA ANALYSIS 

HRV analysis: HRV analysis methods can be 

categorized into time domain and spectral 
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domain analysis. Time domain analysis is 

calculated directly from RR-intervals over the 

feature window. Examples of time domain 

features include mean value of the RR-interval 

(mean RR), standard deviation of the RR-

interval (Std RR), mean value of the HR 

(mean HR), standard deviation of the HR (Std 

HR), RMSSD, and pNN50. Moreover, in the 

spectral domain methods, a power spectrum 

density (PSD) estimate is calculated for the 

RR interval series. Frequently used spectral 

measures are the very low frequency (VLF, 

00.04 Hz), low frequency band (LF) and high 

frequency band (HF), and the ratio LF/HF. 

These spectral domain features are often 

interpreted as a measure of sympathovagal 

balance (autonomic state influence by the 

sympathetic and parasympathetic nervous 

system). We first calculated six time-domain 

features of HRV including mean RR, Std RR, 

mean HR, Std HR, RMSSD, and pNN50. 

Then, we applied a Fast Fourier Transform 

(FFT) to convert the time-domain RR-interval 

sequence to the power spectrum. The 

frequency components are used to calculate 

three spectral-domain features of HRV for 

each window: LF, HF, and LF/HF ratio. 

GSR analysis: Due to the startle response (the 

physiological response of body to a sudden 

stimulus), the resistance of the skin can vary. 

The GSR can measure these subtle differences 

[29]. All GSR signals were filtered with a 

256-point low pass filter with 3Hz cut off 

frequency to reduce noise. We calculated three 

GSR features: the total number of the startle 

responses in the segment, the sum of the 

response magnitude, and the sum of the 

response duration. These three features 

characterize the startle response, and Healey 

and Picard demonstrated their reliability [10]. 

Two additional features, mean and standard 

deviation of skin conductance level, are 

calculated over the feature window. Figure 5 

shows the R-R interval and skin conductance 

recordings of a subject over six experimental 

segments. 

Accelerometer analysis: Olguin and 

Pentland's work indicated that an 

accelerometer placed on hip significantly 

helped classify activities such as sitting, 

running, crawling, and lying down [18]. 

Therefore, we placed one accelerometer on the 

waist belt close to the hip in order to 

maximize the difference of signal among 

sitting, standing, and walking activities. For 

each of the three axial dimensions, we 

calculated twelve features: mean value, 

standard deviation, energy, and correlation of 

each two axes. Table 1 lists the features 

derived from the ECG, GSR, and 

accelerometer data. 

  

         

 
                   

 

                      (A) RR interval data of a subject 

 

 

                 

              (b) Skin conductance of a subject 

                       

      

           Fig.2 ECG and GSR accelerometer data 
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6 Stress Classification 

WEKA machine learning engine is used to 

train classifiers using various learning 

methods, including the J48 Decision Tree, 

Bayes Net, and support vector machine 

(SVM) for stress inference [9]. We divided the 

training data into two different sets in order to 

evaluate how activity information may 

influence the results of stress inference. One 

set of training data only includes the ECG- 

and GSR-related features while the second set 

also includes the accelerometer information. 

We also evaluated classification performance 

for between-subjects datasets and within-

subject datasets. 

 

7 Comparison of HRV parameters in six 

conditions  
 From our analysis of all HRV parameters, we 

found that mean HR and RR are the most 

reliable features to recognize mental stress 

across three physical activities. The standard 

deviation of RR and HR did not demonstrate a 

coherent relation to the baseline and stressed 

segments. Spectral-domain parameters are 

sensitive to the physical activity conditions. 

Hence, this explains why excluding HRV 

features even increases in accuracy compared 

to the all-feature combination as shown in 

Figure 4. 

Fig 5 Comparison of HRV parameters in 6 

conditions 

Fig 5 lists five GSR parameters for each 

segment. For each startle response, we can 

indicate its duration and magnitude. The total 

duration was calculated by accumulating the 

total elapsed time of the responses in the 

window. The total magnitude was measured 

by summing up the difference of the onset and 

the peak of each startle response in window. 

The number of response occurrences over the 

one minute window was also recorded. Total 

duration, total magnitude, total occurrence of 

the responses, and mean GSR level illustrate 

an obvious increase from baseline to stressed 

segment. However, the standard deviation 

does not provide significant change between 

conditions. 

Fig. 5 Comparison of GSR parameters in six 

conditions 

 

8 Conclusion: 

Previous mental stress studies were conducted 

in the laboratory with sedentary subjects. 

However, the controlled setting in a laboratory 

is not suitable for mobile mental stress 

monitoring because physical activity affects 

the measured physiological signals. The main 

goal of this study was to determine whether 

activity information can compensate for the 

interactive effects of mental stress and 

physical activity, which affect the accuracy of 

mental stress detection.  

This paper presented a multimodal approach 

to model the mental stress activation affected 

GSR Parameters Sit    

Base  

Sit   

Stre

ss 

Stan

d  

Base 

Stand 

Stress 

W

al

k  

Ba

se 

Walk 

Stress 

*Total 

Duration(second) 

3.17 14.3

0 

4.16 13.15 13

.7

2 

16.32 

*Total 

magnitude(µsiem

ens) 

0.79 2.04 0.75 3.32 1.

69 

1.97 

*Total 

Occcurence 

1.09 6.58 3.13 6.37 5.

63 

7.47 

*Mean 

GSR(µsiemens) 

4.69 4.83 6.19 6.97 6.

42 

7.22 

Std 

GSR(µsiemens) 

0.62 0.53 0.62 0.71 0.

63 

0.52 HRV 

Parameter

s 

Sit  
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Sit 

Stre

ss 

Stan

d 
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e 

Stand 

Stres

s 

Walk 

Base 

Walk 

Stres

s 

*Mean RR 

(ms) 

887.

59 

814 752.

07 

722.4

3 

586.0

3 

562.9

4 

Std RR 

(ms) 

70.4

8 

85.3

9 

82.4

4 

68.35 92.47 98.94 

*Mean 

HR (bmp) 

69.5

3 

75.5

9 

82.8

4 

85.66 107.0

9 

110.7

9 

Std HR 

(bmp) 

5.94 7.56 8.00 9.50 18.98 16.21 

*pNN50 

(%) 

19.5

4 

15.6

9 

12.0

9 

11.38 4.49 4.23 

LF (%) 7.04 8.45 7.49 7.77 9.43 9.45 

HF (%) 6.25 6.51 6.33 6.73 13.95 15.64 

LH Ratio 1.34 1.51 1.45 1.48 0.67 0.71 
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by physical activities using accelerometers, 

ECG, and GSR sensors. Our analysis showed 

that accelerometer data is necessary to 

improve mental stress detection in a mobile 

environment. We also noticed that the 

Decision Tree classifier has the best 

performance in our experiments using 10-fold 

cross validation. Decision Tree is recognized 

as one of the classification methods with low 

computational complexity [14]. Therefore, the 

performance along with the low complexity of 

the Decision Tree classifier makes it a 

practical design choice for stress detection on 

mobile devices.It is also compared how 

physical activities and mental stress affects 

HRV and GSR parameters. It is found that 

GSR features are relatively independent of the 

three activities. This activity-aware scheme for 

mental stress detection can facilitate the 

development of many affective mobile 

applications using physiological signals (e.g. 

stress management, affective tutoring, and 

emotion-aware human computer interfaces). 

Including activity recognition techniques to 

interpret users' emotional states helps produce 

more feasible wearable sensors in everyday 

life. 
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