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Abstract—The two-level multipoint approximation concept 

was successfully combined with genetic algorithm. The topology 

variables of the trusses are optimized, through genetic algorithm 

in the external layer of the first level approximation, while the 

cross-sectional areas of bars are optimized in the internal layer, 

which is solved by the dual method in the second level 

approximation. To avoid singularity of the multipoint 

approximation, the new study Integrated Multipoint 

Approximation is proposed, using two approximate functions in 

two different specified domains, the new function to be used for 

both topology and sizing. Its accuracy is already studied, results 

were satisfying, for both topology optimization and sizing; 

examples of truss structure are demonstrated to show the validity 

and the efficiency of the proposal. 

Keywords—Structural Optimization, Multi-point 

approximation, genetic algorithms, Topology Optimization 

I.  INTRODUCTION 

Generally, on discrete structures such as trusses, the 
topology optimization is concerned with finding an optimal 
configuration of structure, within a specified domain. The 
weight of a structure is often taken as objective function. The 
most difficulty in such problem is that there may exist many 
local optimal solutions, as well as a singularity problem. The 
two-level multipoint approximation concepts were successfully 
combined with genetic algorithm, (GA) [1]. Hajela & Lee [2] 
developed an approach based on a two level genetic algorithm; 
in one level they satisfy kinematics stability constraints, 
followed by response constraints at the second level, to generate 
near optimal structural topologies. Global search algorithm by 
Ringertz [3] based on the branch and bound algorithm, effective 
for a problem with multiple local optimal solution. 
Sankaranarayana & Haftka [4] used the simultaneous analysis 
and design (SAND) approach. The SAND approach treats the 
equilibrium equations as equality constraints, with the nodal 
displacements used as design variables, in addition to the cross 
sectional areas of truss members, as a result of the method the 
design variables increase substantially. KanGAL [5] used GA 
based optimization, with fixed-length vector of design 
variables, representing member areas and change in nodal 
coordinates, this mostly leading to near optimum.  Sakamoto 
[6] used hybrid method composed by the genetic algorithm, to 
optimize the layout and the cross-sectional area of truss 
members, but this method not suitable for large structures, 
because required a large number of function evaluations and 
structural analysis. In the recent work [7], an exponent modified 
function is introduced to original MA; GA and two-level 
multipoint approximation (MA) by Huang [1] are coupled. The 
method is to process the multi-point approximate function into 
two levels, with a layered optimization strategy. The topology 

variables of the trusses are optimized, through GA in the 
external layer, of the first-level approximation that avoids the 
use of repeated finite element analysis, while the cross-
sectional areas of bars are optimized in the internal layer, which 
is solved by the dual method, in the second level approximation. 
The original MA concept shows high quality approximation in 
sizing, results of application examples are highly competitive, 
but singularity may take place, when design variable   
approaches to zero, and adaptive parameters   are negative 
values. In this study, the integrated multipoint approximation 
(IMA) is proposed. IMA uses two approximate functions (MA 
and its modified), each of them implemented in different 
specified domain, to avoid the singularity of the MA, and to 
gain the best features of both approximate functions; as a result, 
the high quality of IMA is increased, as unity function to be 
used for topology and sizing. A series of classical truss 
examples including some ground truss structure are used to 
verify the efficiency of the proposal. 

II. IMA FUNCTION USED IN STRUCTURAL 

TOPOLOGY OPTIMIZATION 

First, IMA [8] is a result of gathering the original MA with 
its modification, in one integrated model that can be reliable 
and effective, for both sizing and topology optimization. The 
accuracy of the proposed IMA was tested, through a series of 
explicit and implicit functions [8]. The results were 
comparable, and concluded that IMA can integrate the accuracy 
of original MA in a domain xi ϵ (xit , xu], and that of the modified 
MA (MMA) in a domain xi ϵ [0, xit ); IMA can also have its 
independent accuracy, when some components from both 
domains are shared in one iteration. Where xi is the design 
variable; xit is the expansion point, and xu is the upper limit. At 
p-th stage of the first-level approximate problem is presented as 
follows: -  

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑓𝑖𝑛𝑑   𝑋 = {𝑥1, 𝑥2, , , 𝑥𝑛}
𝑇

            𝛼 = {𝛼1, 𝛼2, , , 𝛼𝑛}
𝑇

min       f(x) =∑𝑓𝑖(𝑋)

𝑛

𝑖=1

𝑆𝑡         𝑔̃𝑗
(𝑝)(𝑋) ≤ 0                          𝑗 = 1, , , 𝐽1

𝛼𝑖𝑥𝑖(𝑝)
𝐿 + (1 − 𝛼𝑖)𝑥𝑖
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𝑥𝑖 ≤ 𝛼𝑖𝑥𝑖(𝑝)
𝑈 + (1 − 𝛼𝑖)𝑥𝑖 

𝑏                                 

𝛼𝑖 = 0    𝑜𝑟    𝛼𝑖 = 1

𝑥𝑖(𝑝)
𝑈 = 𝑚𝑖𝑛{𝑥𝑖

𝑈 , 𝑥̃𝑖(𝑝)
𝑈 }

𝑥𝑖(𝑝)
𝐿 = 𝑚𝑎𝑥{𝑥𝑖

𝐿 , 𝑥̃𝑖(𝑝)
𝐿 }

                        (1) 

Where X and α are the vectors of cross-sectional size 
variables, and topology variables, respectively; 𝑗1 is the number 
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of active constraint; n is the group number of linked bars; 𝑥𝑖(𝑝)
𝑈  

and 𝑥𝑖(𝑝)
𝐿   are the upper and lower bounds of the size variables; 

𝑥𝑖
𝑏 is a small value to substitute the cross sectional size of the 

removed bar; 𝑓𝑖(𝑋) is the weight of bars in a group of 𝛼𝑖; 

𝑥̃𝑖(𝑝)
𝑈 and 𝑥̃𝑖(𝑝)

𝐿  are the move limits; 𝑔̃𝑗
(𝑝)
(𝑋) represents the 

approximated constraint function, which is stable even 𝑥𝑖 
reaches zero. The functions are summarized here as follows: - 

𝑔̃𝑗
(𝑝)(𝑋) =∑{𝑔(𝑋𝑡) + 𝑔̃𝐼𝑀𝐴(𝑋)}ℎ𝑡(𝑋)

𝐻

𝑡=1

                                (2) 

Where, 

𝑔̃𝐼𝑀𝐴(𝑋) = 𝑔̃𝑀𝐴(𝑋) + 𝑔̃𝑀𝑀𝐴(𝑋)                                               (3) 

{
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1

𝑟𝑡𝑜
∑
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𝑟𝑡𝑜)

𝑤ℎ𝑒𝑟𝑒,          𝑥𝑖 ≥ 𝑥𝑖𝑡                                  
                                 

𝑔̃𝑀𝑀𝐴(𝑋) =
1

𝑟𝑡𝑀
∑

𝜕𝑔(𝑋𝑡)

𝜕𝑥𝑖

𝑛

𝑘=1
𝑘≠𝑖

(1 − 𝑒−𝑟𝑡𝑀(𝑥𝑘−𝑥𝑖𝑡))

𝑎𝑛𝑑                  𝑥𝑘 < 𝑥𝑖𝑡                                

                 (4) 

Where, 𝑥𝑖𝑡(𝑡 = 1,… , 𝐻;  𝑖 = 1,… , 𝑛) are the known points; 
H is the number of points to be counted; n is the number of 
design variables in a point; 𝑔(𝑋𝑡) is the function values. And, 
ℎ𝑡(𝑋) is the weighting function, which can be determined as: - 

ℎ𝑡(𝑋) =
ℎ̅𝑙(𝑋)

∑ ℎ̅𝑙(𝑋)
𝐻
𝑙=1

         ,            𝑡

= 1,… , 𝐻                          (5) 

ℎ̅𝑙(𝑋) =∏(𝑋 − 𝑋𝑆)
𝑇

𝐻

𝑠=1
𝑆≠𝑙

(𝑋 − 𝑋𝑆)      ,       𝑙

= 1, … , 𝐻             (6) 

The exponent 𝑟𝑡𝑜 and 𝑟𝑡𝑀 are the adaptive parameters, to 
control the non-linearity of the approximation, to be found from 
the following equations respectively: - 

𝑓(𝑟𝑡𝑜) = 𝑔(𝑋𝐻) − [𝑔(𝑋𝑡)  

+
1

𝑟𝑡𝑜
∑

𝜕𝑔(𝑋𝑡)

𝜕𝑥𝑖
𝑥𝑖𝑡
1−𝑟𝑡𝑜

𝑛

𝑖=1

(𝑥𝑖𝐻
𝑟𝑡𝑜

− 𝑥𝑖𝑡
𝑟𝑡𝑜)]     (7) 

𝑓(𝑟𝑡𝑀) = 𝑔(𝑋𝐻) − [𝑔(𝑋𝑡)

+
1

𝑟𝑡𝑀
∑

𝜕𝑔(𝑋𝑡)

𝜕𝑥𝑖
(1

𝑛

𝑖=1

− 𝑒−𝑟𝑡𝑀(𝑥𝑖𝐻−𝑥𝑖𝑡))]   (8) 

Where, 𝑋𝐻 is the present point; usually a domain for 
𝑟𝑡𝑜 & 𝑟𝑡𝑀  ∈ [𝑎, 0)  𝑎𝑛𝑑  𝑟𝑡𝑜 & 𝑟𝑡𝑀  ∈ (0 , 𝑏] should be given, 

ba &  are lower and upper limitations for 𝑟𝑡𝑜 and 𝑟𝑡𝑀. In this 

study the upper and lower limits are defined as –3.5 and 3.5 
respectively.  

A. The layered strategy 

Because of mixed variables, a layered strategy was 
introduced. The topology variables of the trusses are optimized 
using GA technique, in the external layer, where the finite 
element is avoided; using this technique, the problem in (1) is 
transferred into minimum problem with penalty function R. 

min 𝐹1 = (𝑋) + 𝑅∑[𝑚𝑎𝑥 (𝑔̃𝑗
(𝑝)(𝑋), 0)]

2

                         (9)

𝑗1

𝑗=1

 

Only the topology variables  are optimized in this layer. 
Then the problem transferred into internal layer, where the 
cross-sectional areas of the topology bars are optimized, 
through second-level approximation, and solved by the duel 
method. 

III. NUMERICAL EXAMPLES 

Before different examples from literature are chosen to 
demonstrate the validity and to compare the efficiency of the 
IMA. With the most well-known examples 10-bar and the 72-
bar trusses, the comparison is made on two aspects, cross-
sectional sizing, and topology optimization. Other examples are 
ground truss structure; results were compared on topology 
optimization. 

A. Example 1. The Ten-Bar Truss 

For the structure response the 10-bar truss fig. 1. The 
optimized Ten-bar truss is shown in fig. 2. The iteration history 
data of topology as well as sizing are tabulated in table I. 
Comparison is made with [7] for topology optimization, and for 
sizing with [1]. Table II shows the final optimum design 
variable results. Apparently, results for both aspects are clearly 
mutual. Moreover, present study has less iteration for topology. 

 

Fig. 1. The Ten Bar Truss 
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Fig. 2. The Optimized Ten-Bar Truss 

TABLE I.  ITERATION HISTORY DATA FOR 10-BAR TRUSS 

No. Of 

Analysis 

Weights (lbs) 

Present study Ref. [1] Ref. [7] 

Sizing Topology Sizing Topology 

1 12589.40 12589.403 8266.1 12589.4 

2 3963.83 3858.319 6061.3 6082.559 

3 6682.63 4813.135 5816.3 5687.487 

4 5959.35 6041.306 5482 5215.432 

5 5928.46 5970.800 5540.1 4851.243 

6 5798.99 5891.545 5106.2 4816.312 

7 5579.61 5721.890 5262 4882.064 

8 5252.91 5407.933 5076.9 4867.044 

9 5130.36 5229.040 5065.1 4884.602 

10 5100.00 5028.617 5075.1 4873.683 

11 5074.42 4910.501 5062.7 4881.59 

12 5068.69 4928.812 5067.4 4896.1 

13  4898.899  4895.039 

14  4899.682  4897.345 

…    … 

19    4899.39 

TABLE II.  FINAL OPTIMUM DESIGN VARIABLE RESULTS, 
FOR10-BAR TRUSS. 

No. Of 

Variables 

Final Optimum Design (in2) 

Present study Ref. [1] Ref. [7] 

Sizing Topology Sizing Topology 

1 30.79 30.1107 30.62 30.2897 

2 0.0935 0 0.1 0 

3 23.154 22.1317 23.28 21.4207 

4 15.086 15.0522 15.13 15.1451 

5 0.161 0 0.1 0 

6 0.670 0 0.529 0 

7 7.3 6.0724 7.503 6 

8 21.327 21.2948 21.1 21.4184 

9 21.334 21.2871 21.4 21.4184 

10 0.130 0 0.1 0 

No. Of 

Analysis 
12 14 12 19 

Weights 

[lbs] 
5068.69 4899.68 5067.4 4899.39 

B. Example 2. The 72-Bar Truss 

For the structure response the 72-bar truss fig. 3. The 
Optimized 72-bar truss is shown in fig. 4. The iteration history 
data are tabulated in table III, and the final optimum design 
variable results are in table IV. Clearly, the results are mutual, 
from the point of view of the function value for both cross 
section sizing and topology. The present study has better 
number of analysis for topology, but for cross-section sizing a 
little higher than [1], also the final optimal design variable 
results have considerable precise agreement. 

 

Fig. 3. The 72-Bar Truss 

 

Fig. 4. The optimized 72-Bar Truss 
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TABLE III.  ITERATION HISTORY DATA FOR 72-BAR TRUSS 

No. Of  

Analysi

s 

Weights (lbs) 

Present study Ref. [1] Ref. [7] 

Sizing Topology Sizing Topology 

1 853.09 853.09 656.77 853.09 

2 345.19 154.68 386.4 650.83 

3 558.57 267.28 368.17 518.23 

4 428.51 386.88 364.82 452.33 

5 409.39 322.48 364.69 438.97 

6 393.32 339.74  420.77 

7 384.64 352.56  414.75 

8 388.69 356.75  403.64 

9 375.11 365.11  360.90 

10 370.01 366.12  327.15 

11 367.42 362.93  375.01 

12 365.85 365.95  368.34 

13 364.69 362.41  362.54 

14  364.12  360.64 

…  …  362.64 

20  362.36  362.58 

21    362.35 

…    … 

28    362.30 

TABLE IV.  FINAL OPTIMUM DESIGN VARIABLE RESULTS FOR 

72-BAR TRUSS 

No. Of 

 Variables 

Final Optimum Design (in2) 

Present study Ref. [1] Ref. [7] 

Sizing Topology Sizing Topology 

1 0.168 0.167 0.158 0.167 

2 0.535 0.535 0.537 0.535 

3 0.434 0.452 0.412 0.452 

4 0.593 0.571 0.562 0.572 

5 0523 0.519 0.508 0.519 

6 0.519 0.517 0.520 0.517 

7 0.0219 0 0.1 0 

8 0.0747 0.129 0.1 0.128 

9 1.285 1.29 1.280 1.293 

10 0.516 0.517 0.515 0.517 

11 0.0213 0 0.1 0 

12 0.0155 0 0.1 0 

13 1.892 1.885 1.899 1.8846 

14 0.516 0.517 0.516 0.517 

15 0.0213 0 0.1 0 

16 0.0155 0 0.1 0 

No. Of 

Analysis 
13 20 5 28 

Weights 

[lbs] 
364.695 362.364 364.69 362.302 

C. Example 3. The Ten-Node, 2D Truss ground structure 

IMA is applied to the ten-node truss ground structure fig. 5, 
with ground structure of all possible interconnection a total of 
34 members; parameters details in [5]. 

 

Fig. 5. Ten-Node truss ground structure 

The Optimized Ten-node truss ground structure is shown in 
fig. 6, as well as the optimized solution from [5]. For the 
objective function and cross-sectional area of members of the 
optimized truss are tabulated in table V. The optimized solution 
fig. 6 shows present study has almost same topology as [5], the 
number of members are less from those in [5], and no 
overlapping members as they do in their optimum solution. The 
cross-sectional areas are different for those overlapping 
members, but are almost identical for others, and the objective 
function is comparable. 

TABLE V.  CROSS-SECTIONAL AREA OF THE OPTIMIZED 

TEN-NODE TRUSS GROUND STRUCTURE 

Member No. 
Cross-sectional area (in2) 

Present study Ref. [5] 

1 0.446612343 0.477 

2 0.446612343 0.477 

3 0.565546022 0.566 

4 0.565546022 0.566 

5 0.399648979 0.082 

6 0.399648979 0.082 

7 0 0.321 

Weights [lb] 44.2708 44.033 

 

 

Fig. 6. The Optimized Ten-Node Truss ground structure 
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D. Example 4. The ground structure of a 9-nodes Truss 

The truss ground structure of nine nodes is shown in fig. 7, 
for details see [6]. The Optimized Nine-node truss ground 
structure is shown in fig. 8, as well as the topology-optimized 
solution from [6], for the objective function and cross-sectional 
areas of members of the optimized truss are tabulated in table 
VI. The topology-optimized solution fig. 8 shows the proposed 
IMA has same topology as [6], and the cross-sectional areas of 
the members are slightly different. 

The Nine-Node Truss ground structure 

 

Fig. 7. The Optimized Nine-Node Truss ground structure 

 

 

 

TABLE VI.  CROSS-SECTIONAL AREA OF THE OPTIMIZED 

NINE-NODE TRUSS GROUND STRUCTURE 

Member No. 
Cross-sectional area (mm2) 

Present Study Ref. [6] 

1 264.156 254 

2 105.1604 95 

3 379.5246 359 

4 137.4901 134 

5 539.5367 507 

6 377.2747 359 

Weights [kg] 0.5459 0.502 

IV. CONCLUSION 

Apparently and as discussed in each example the results 
show the proposed IMA is very satisfying. First from the 
classical 10-bar, and 72-bar trusses examples bring out that the 
IMA results, compared with the published one are comparable 
and satisfying, for both topology optimization as well as cross 
sectional sizing, also it is noticeable that the proposed method 
has less iterations for topology analysis. Moreover, for the 
ground trusses structures results assure that the IMA results are 
satisfying and comparable for topology optimization as seen 
from the optimized figures the proposed method has very good 
fitting with published results with no overlapping. However, 
the IMA can be very useful for both sizing and topology 
optimization. 

REFERENCES 
 

[1] H. Huang, & R. W. Xia “Two-level multipoint constraint approximation 
concept for structural optimization”; Structural Optimization 9, 38-45 
(1995) 

[2] P. Hajela and E. Lee “Genetic algorithms in truss topological 
optimization” J. Solids Structures Vol. 32, No. 22, pp.3341-3357 (1995) 

[3] U. T. Ringertz “A branch and bound algorithm for topology optimization 
of truss structures” Engineering optimizations, 10, 111-124 (1986) 

[4] S. Sankaranarayanan, R. Haftka and R. Kapania “Truss topology 
optimization with simultaneous analysis and design” AIAA-1992-2315-
CP 

[5] K. Deb & S Gulati “Design of Truss-Structure for Minimum Weight 
using Genetic Algorithms”; KanGal, Indian Institute of Technology, 
Kanpur, PIN 208016, India, KanGal Report No.99001, deb@iitk.ac.in 

[6] Jiro Sakamoto & Juhachi “A Technique of optimal layout design for 
truss structures using genetic algorithm” AIAA-93-1582-CP 

[7] Dong Yongfang and Huang Hai “Truss topology optimization by using 
multi-point approximation and GA” Chinese Journal of Computational 
Mechanics; Vol.21-No.6; 2004 

[8] A. Hassen and H. Huang “Study on accuracy of the combined multi-
point approximation methods used in structural topology optimization” 
CJK-OSM-3 Joint Symposium on Optimization of Structural and 
Mechanical Systems, October 30 – November 2, 2004, Kanazawa, 
Japan. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS110017

Vol. 5 Issue 11, November-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 181


