

Study & Review of Self Destructing Data

System: SeDaS for Secure Cloud Storage

Ms. Dhanashri R. Kulkarni

1
, Mr. Hasib M. Shaikh

2

Department of Computer Engineering,

K. C. College of Engineering & Management Studies & Research,

Kopri, Thane (E),

University of Mumbai, Maharashtra

dhanashri98@gmail.com

Abstract - In cloud storage user may keep their personal

passwords, notes, account numbers, and other sensitive

and private information that could be accessed or misused

by any other unauthorized or illegal user. Most of the

times Cloud Service Providers (CSPs') make several

copies of user data, catching and archiving of data files

without user permission. In the self-destructing data

system all the user data and their copies along with

decryption key get destructed and unreadable after a user

specified time, without any user intervention. All privacy

preserving expectations are fulfilled by SeDas with

practical use. SeDas throughput for uploading and

downloading of data is acceptably decreased while latency

for upload/download operations is increased when SeDas

is compared with the system without self-destructing data

mechanism. Thus SeDas is the most optimum solution to

protect important and private data of the user in active

storage framework of cloud computing.

Keywords

Self-destructing data, active storage, data privacy, cloud

computing.

I. INTRODUCTION

Cloud Computing is a new computing paradigm that is

built on virtualization, parallel and distributed

computing, utility computing, and service-oriented

architecture. Cloud services are becoming more and

more important for people's life due to fast development

of cloud computing and popularization of mobile

internet. One cloud service that is being offered is a

revolutionary storage method for user data. From music

files to pictures to sensitive documents, the cloud

invisibly backs up user files and folders and alleviates

the potentially endless and costly search for extra

storage space. An alternative to buying an external hard

drive or deleting old files to make room for new ones,

cloud storage is convenient and cost-effective. It works

by storing user's files on a server out in the internet

somewhere rather than on local hard drive. This allows

user to back up, sync, and access their data across

multiple devices as long as user have internet

capability. When user use this storage service they must

consider the added risk that their information may be

accessible to other miscreant, unauthorized user or

competitor to whom user do not wish to have access to

their data so other people do not invade user privacy.

When cloud storage is used by any user security policy

is expected from cloud service provider by the user to

protect their data from leaking. On the other hand when

the data is being processed, transformed and stored by

the current computer system or network, systems or

network must cache, copy or archive it. These copies

are essential for systems and the network. However,

people have no knowledge about these copies and

cannot control them, so these copies may leak their

privacy. On the other hand, their privacy also can be

leaked via Cloud Service Providers (CSPs') negligence,

hackers' intrusion or some legal actions. These

problems present formidable challenges to protect user

data privacy.

To provide optimal solution to all these privacy

challenges Zeng proposed self destructing data system

SeDas [1] which is based on active storage framework

of cloud computing. In the SeDas system two new

modules are defined, a self-destruct method object that

is associated with each secret key part and survival time

parameter for each secret key part. In SeDas key

distribution algorithm, Shamir's algorithm [2], is used

as the core algorithm to implement users distributing

keys in the object storage system. An object-based

storage interface is also used to store and manage the

equally divided key in SeDas. SeDas supports security

erasing files and random encryption keys stored in a

hard disk drive (HDD) or solid state drive (SSD),

respectively. SeDas meet with the requirements of self-

destructing data with controllable survival time while

users can use this system as a general object storage

system. SeDas is practical to use and meets all the

privacy-preserving expectations.

A. Data Self Destruct:

All Self-destructing data systems are designed to

address personal data security concerns. Their goal is to

destroy data after a pre-specified timeout, regardless of

where the data is stored or archived and despite

technology that may make such deletion challenging.

As a result, such systems prevent the exposure of old

1

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

data that is past its useful life. Self destruction is

implemented by encrypting data with a key and then

escrowing the information needed to reconstruct the

decryption key with one or more third parties.

Assuming that the key reconstruction information

disappears from the escrowing third parties at the

intended time, encrypted data will become permanently

unreadable: (1) even if an attacker obtains a copy of the

encrypted data and the users cryptographic keys and

passphrases after the timeout, (2) without the user or

users agent taking any explicit action to delete it, (3)

without needing to modify any stored or archived

copies of that data, and (4) without the user relying on

secure hardware. Once the key-reconstruction

information disappears, data owners can be con_dent

that their data will remain inaccessible to powerful

attacks, whether from hackers who obtain copies of

backup archives and passphrases or through legal

means.

B. Object-Based Storage and Active Storage:

Object-based storage is an emerging standard designed

to address the problem of data sharing, security, and

device intelligence. Object-based storage (OBS) uses an

object-based storage device (OSD) as the underlying

storage device. A storage object is a logical collection

of bytes on a storage device, with well-known methods

for access, attributes describing characteristics of the

data, and security policies that prevent unauthorized

access. Unlike blocks, objects are of variable size and

can be used to store entire data structures, such as files,

database tables, medical images, or multimedia.

Objects can provide the advantages of both files and

blocks. Like blocks, objects are a primitive unit of

storage that can be directly accessed on a storage device

(i.e., without going through a server); this direct access

offers performance advantages similar to blocks. Like

files, objects are accessed using an interface that

abstracts storage applications from the metadata

necessary to store the object, thus making the object

easily accessible across different platforms. Providing

direct, file-like access to storage devices is therefore the

key contribution of object-based storage.

With the emergence of object-based interface, storage

devices can take advantage of the expressive interface

to achieve some cooperation between application

servers and storage devices. A storage object can be a

file consisting of a set of ordered logical data blocks, or

a database containing many files, or just a single

application record such as a database record of one

transaction. Information about data is also stored as

objects, which can include the requirements of Quality

of Service (QoS), security, caching, and backup.

C. Completely Erase Bits of Encryption Key:

As users, corporations, and government agencies store

more data in digital media, managing that data and

access to it becomes increasingly important. Reliably

removing data from persistent storage is an essential

aspect of this management process, and several

techniques that reliably delete data from hard disks are

available as built-in ATA or SCSI commands, software

tools, and government standards. In SeDas, erasing

files, which include bits of the encryption key, is not

enough when we erase/delete a file from their storage

media; it is not really gone until the areas of the disk it

used are overwritten by new information. With flash-

based solid state drives (SSDs), the erased file situation

is even more complex due to SSDs having a very

different internal architecture.

Several techniques that reliably delete data from hard

disks are available as built-in ATA or SCSI commands,

software tools (such as, DataWipe [3], HDDerase [4]

SDelete [5]), and government standards. These

techniques provide effective means of sanitizing HDDs:

either individual files they store or the drive in their

entirety. Software methods typically involve

overwriting all or part of the drive multiple times with

patterns specifically designed to obscure any remnant

data. For instance, different from erasing files which

simply marks file space as available for reuse, data

wiping overwrites all data space on a storage device,

replacing useful data with garbage data.

The rest of this paper is organized as follows. The

review of the literature survey is described in Section II.

Section III described methodology and implementation

of SeDas. The extensive evaluations results and

discussions are presented in Section IV, and Section V

concludes this paper.

II. LITERATURE SURVEY

SeDas is self-destructing data system in active storage

of cloud computing. To know in detail working of

SeDas there should be in detail literature survey of data

self-destruct, object-based storage and active storage

and completely erase bits of encryption key.

a. Data Self Destruct:

Please us In 2005 Perlman [6] described file system

design with assured delete that supported high

availability of data, until the data should be expunged,

at which time it is impossible to recover the data. This

design supported three types of assured delete;

expiration time known at file creation, on-demand

deletion of individual files, and custom keys for classes

of data. The obvious approach, of course, is to encrypt

the data on nonvolatile storage, and then destroy keys at

the appropriate times.

In 2009 R Geambasu [7] presented Vanish: increasing

data privacy with self-destructing data, a system that

met with the challenge of privacy preserving through a

novel integration of cryptographic techniques with

global-scale, P2P, distributed hash tables (DHTs). The

work targeted the goal of creating data that self-

destructs or vanishes automatically after it is no longer

useful. Moreover, it should do so without any explicit

action by the users or any party storing or archiving that

data, in such a way that all copies of the data vanish

2

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

simultaneously from all storage sites, online or offline.

The leveraging of the essential properties of modern

P2P systems, including churn, complete

decentralization, and global distribution under different

administrative and political domains was the aspect of

this vanish system.

In 2010 L. Zeng [8] proposed a new scheme, called

Safe Vanish: improved self data destruction. In Safe

Vanish, to prevent hopping attack, which is one kind of

the Sybil attacks the length range of the key shares is

extended to increase the attack cost substantially, and

did some improvement on the Shamir Secret Sharing

algorithm are done. Also, an improved approach against

sniffing attacks was presented by way of using the

public key cryptosystem to prevent from sniffing

operations.

In 2010 Tang [9] designed and implemented FADE:

secure overlay cloud storage with file assured deletion,

a practical, implementable, and readily deployable

cloud storage system that focuses on protecting deleted

data with policy-based file assured deletion. FADE was

built upon standard cryptographic techniques, such that

it encrypts outsourced data files to guarantee their

privacy and integrity, and most importantly, assuredly

deletes files to make them unrecoverable to anyone

(including those who manage the cloud storage) upon

revocations of file access policies. In particular, the

design of FADE was geared toward the objective that it

served an overlay system that works seamlessly atop

today’s cloud storage services, while introducing only

minimal performance and monetary cost overhead.

Their work provides insights of how to incorporate

value-added security features into today’s cloud storage

services.

In 2010 Wang [10] presented privacy-preserving public

auditing for data storage security in cloud computing. In

this the public key based homomorphic authenticator

was uniquely integrated with random mask technique to

achieve a privacy preserving public auditing system for

cloud data storage security while keeping all

requirements of public auditability for cloud data

storage in mind. To support efficient handling of

multiple auditing tasks, the technique of bilinear

aggregate signature was extended in the main result into

a multi-user setting, where TPA could perform multiple

auditing tasks simultaneously. Extensive security and

performance analysis showed the proposed scheme of

Wang was provably secure and highly efficient.

b. Object-Based Storage and Active

Storage:

In 2003 M. Mesnier [11] described object-based storage

is an emerging standard designed to address the

problem of change in the device interface. The author

described object-based storage, stressing how it

improves data sharing, security, and device intelligence.

He also discussed some industry applications of object-

based storage and academic research using objects as a

foundation for building even more intelligent storage

systems. The object interface offers storage that is

secure and easy to share across platforms, but also high-

performance, thereby eliminating the common trade-off

between files and blocks. Furthermore, objects provide

the storage device with an awareness of the storage

application and enable more intelligence in the device.

Object-based storage was designed to exploit the

increasing capabilities of storage devices.

Characteristics of the future storage device may include

self-configuration, self-protection, self-optimization,

self-healing, and self-management. Replacing block

interfaces with objects is a major step in this evolution.

In 2009 R.Weber [12] has developed working draft on

SCSI Object-Based Storage Device Commands (OSD).

This SCSI command set is designed to provide efficient

operation of input/output logical units that manage the

allocation, placement, and accessing of variable- size

data-storage containers, called objects. Objects are

intended to contain operating system and application

constructs. This standard defined the command set

extensions to control operation of Object-Based Storage

devices.

In 2011 Kang [13] proposed Object-based SCM: An

Efficient Interface for Storage Class Memories to fully

utilize different characteristics of SCMs, the author

proposed the use of an object-based model that

provided the hardware and firmware the ability to

optimize performance for the underlying

implementation, and allowed drop-in replacement for

devices based on new types of SCM. The author

discussed the design of object-based SCMs and

implemented an object-based ash memory prototype.

By analyzing different design choices for several

subsystems, such as data placement policies and index

structures, he showed that their object-based model

provides comparable performance to other ash file

systems while enabling advanced features such as

object-level reliability.

c. Completely Erase Bits of

Encryption Key:

In 2011 M. Wei [14] presented Reliably Erasing Data

From Flash-Based Solid State Drives. The work

focused on empirically evaluation of the effectiveness

of hard drive-oriented techniques and of the SSDs built-

in sanitization commands by extracting raw data from

the SSDs ash chips after applying these techniques and

commands. Their results lead to three conclusions:

First, built-in commands were effective, but

manufacturers sometimes implement them incorrectly.

Second, overwriting the entire visible address space of

an SSD twice is usually, but not always, sufficient to

sanitize the drive. Third, none of the existing hard

drive-oriented techniques for individual file sanitization

were effective on SSDs. The third conclusion led to

develop ash translation layer extensions that exploit the

details of ash memory’s behavior to efficiently support

file sanitization. Overall, they found that reliable SSD

sanitization requires built-in, verifiable sanitize

operations.

3

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

Several techniques that reliably delete data from hard

disks are available. Software tools are also available for

data delete such as, DataWipe, HDDerase, SDelete, and

government standards. All these techniques provide

effective means of sanitizing HDDs: either individual

files they store or the drive in their entirety. Software

methods typically involve overwriting all or part of the

drive multiple times with patterns specifically designed

to obscure any remnant data. For instance, different

from erasing files which simply marks file space as

available for reuse, data wiping overwrites all data

space on a storage device, replacing useful data with

garbage data. Depending upon the method used, the

overwrite data could be zeros or could be various

random patterns. The ATA and SCSI command sets

include secure erase commands that should sanitize an

entire disk. Physical destruction and degaussing are also

effective.

II. METHODOLOGY

Lifetime control over the data is becoming increasingly

important as more public and private activities are

captured in digital form, whether in the cloud or on

personal devices. Self- destructing data systems can

help users to preserve some control, by ensuring that

data becomes permanently unavailable after a pre-

specified timeout. The key properties regarding

methodology of SeDas for self-destructing data system

based on an active storage framework of cloud

computing are described in this section.

a. SeDas Architecture:

The architecture of SeDas is shown in Figure 3.1. There

are three parties based on the active storage framework.

i) Metadata server (MDS): MDS is responsible for user

management, server management, session management

and file metadata management. ii) Application node:

The application node is a client to use storage service of

the SeDas. iii) Storage node: Each storage node is an

OSD. It contains two core subsystems: (key, value)

store subsystem and active storage object (ASO)

runtime subsystem. The (key, value) store subsystem

that is based on the object storage component is used

for managing objects stored in storage node: lookup

object, read/write object and so on. The object ID is

used as a key. The associated data and attribute are

stored as values. The ASO runtime subsystem, based on

the active storage agent module, in the object-based

storage system is used to process active storage request

from users and manage method objects and policy

objects.

Fig 1: SeDas System Architecture

b. Active Storage Object:

The architecture An active storage object derives from a

user object and has a time-to-live (ttl) value property.

The ttl value is used to trigger the self-destruct

operation. The ttl value of a user object is infinite so

that a user object will not be deleted until a user deletes

it manually. The ttl value of an active storage object is

limited so an active object will be deleted when the

value of the associated policy object is true.

Interfaces extended by ActiveStorageObject class are

used to manage ttl value. The create member function

needs another argument for ttl. If the argument is -1,

UserObject::create will be called to create a user object;

else, ActiveStorageObject::create will call

UserObject::create first and associate it with the self-

destruct method object and a self destruct policy object

with the ttl value. The getTTL member function is

based on the read_attr function and returns the ttl value

of the active storage object. The setTTL, addTime and

decTime member function is based on the write_attr

function and can be used to modify the ttl value.

c. Self-Destruct Method Object:

The kernel code can be executed efficiently in general;

however, a service method is implemented in user space

with following considerations in SeDas.

Many libraries such as libc can be used by code in user

space but not in kernel space. Mature tools can be used

to develop software in user space. It is much safer to

debug code in user space than in kernel space.

A service method needs a long time to process a

complicated task, so implementing code of a service

method in user space can take advantage of

performance of the system. The system might crash

with an error in kernel code, but this will not happen if

the error occurs in code of user space.

A self-destruct method object is a service method. It

needs three arguments. The lun argument specifies the

4

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

device, the pid argument specifies the partition and the

obj_id argument specifies the object to be destructed.

d. Data Process:

To use the SeDas system, user applications should

implement logic of data process and act as a client

node. There are two different logics: uploading and

downloading.

Algorithm 1: Uploading File

Require: data (data read from this _le to be uploaded),

key (data read from the key), ttl

(time-to-live of the key)

BEGIN

// encrypt the input data with the key

1: bu_er = ENCRYPT(data,key);

2: connect to a data storage server;

3: if failed

4: rEturn fail;

5: create _le in the data storage server and write bu_er

into it;

// use ShamirSecretSharing algorithm to get key shares

// k is count of data servers in the SeDas system

6: sharedkeys[1...k] = ShamirSecretSharingSplit(n, k,

key);

7: for i from 1 to k

8: connect to DS[i];

9: if successful

10: create object(sharedkeys[i], ttl);

11: else

12: for j from 1 to i

13: delete key shares created before this one;

14: endfor

15: return fail;

16: endif

17: endfor

18: return successful;

END

i) Uploading file process: When a user uploads a file to

a storage system and stores his key in this SeDas

system, the user should specify the file, the key and ttl

as arguments for the uploading procedure. Figure 2

represents the uploading file process. The pseudo-code

for uploading file is presented in Algorithm 1. In these

codes, data and key has been read from the file. The

ENCRYPT procedure uses a common encrypt

algorithm or user-defined encrypt algorithm. After

uploading data to storage server, key shares generated

by ShamirSecretSharing algorithm will be used to

create active storage object (ASO) in storage node in

the SeDas system.

ii) Downloading file process: Any user who has

relevant permission can download data stored in the

data storage system. The data must be decrypted before

use. The whole logic is implemented in code of user’s

application.

Fig 2: Uploading File Process

In the above code, the encrypted data and metadata

information of the key has been read from the

downloaded file. Before decrypting, client should try to

get key shares from storage nodes in the SeDas system.

If the self-destruct operation has not been triggered, the

client can get enough key shares to reconstruct the key

successfully. If the associated ASO of the key has been

destructed, the client cannot reconstruct the key so

client only read encrypted data.

e. Data Security Erasing in Disk:

There must be secure deletion of sensitive data and

reduction of the negative impact of OSD performance

due to deleting operation. The proportion of required

secure deletion of all the files is not great, so if this part

of the file updates operation changes, then the OSD

performance will be impacted greatly.

In SeDas the implementation method is as follows: i)

The system prespecify a directory in a special area to

store sensitive files. ii) Monitor the file allocation table

and acquire and maintain a list of all sensitive

documents, the logical block address (LBA). iii) LBA

list of sensitive documents appear to increase or

decrease, the update is sent to the OSD. iv) OSD

internal synchronization maintains the list of LBA, the

LBA data in the list updates. For example, for SSD, the

old data page writes 0, and then another writes the new

data page. When the LBA list is shorter than the

corresponding file, size is shrinking. At this time, the

old data needs to correspond to the page all write. v)

For ordinary LBA, the system uses the regular update

method. vi) By calling ordinary data erasure API, the

5

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

SeDas system safely delete sensitive files of the

specified directory.

Only changes to few sensitive documents are carried

out due to the update operation, no effect on the

operational performance of the ordinary file in the

SeDas. In general, the secure delete function is implied

while the OSD read and write performance can be

negligible.

f. Security Erasing in Disk:

There are multiple storage services for a user to store

data. To avoid the problem produced by the centralized

trusted third party, the responsibility of SeDas is to

protect the user key and provide the function of self-

destructing data. Figure 3.3 shows the brief structure of

the user application program realizing storage process.

In this structure, the user application node contains two

system clients: any third-party data storage system

(TPDSS) and SeDas. The user application program

interacts with the SeDas server through SeDas client,

getting data storage service.

The way to attain storage service by client interacting

with a server depends on the design of TPDSS. The

process to store data has no change, but encryption is

needed before uploading data and the decryption is

needed after downloading data. In the process of

encryption and decryption, the user application program

interacts with SeDas.

In SeDas the Shamir's Secret Sharing algorithm is used

to construct the secret key. The basic concept of this

secret sharing is that to divide data D into n pieces in

such a way that D is easily reconstructable from any k

pieces, but even complete knowledge of k - 1 pieces

reveals absolutely no information about D. This

technique enables the construction of robust key

management schemes for cryptographic systems that

can function securely and reliably even when

misfortunes destroy half the pieces and security

breaches expose all but one of the remaining pieces.

Thus this key is generated and used in SeDas system.

Fig 3: Structure of User Application Program Realizing Storage

Process

IV. DISCUSSIONS

To evaluate SeDas, platform was built up on pNFS that

supports simple file management, which includes some

data process functions such as file uploading,

downloading and sharing. Functional testing and

performance evaluation of SeDas was done using host

and virtual node configurations of SeDas and pNFS.

From this evaluation following observations were found

out.

1) Functional Testing Observations: After giving the

full path of file, key file, and the life time for key parts,

the system have encrypted the data and uploaded

encrypted data. The life time of key parts was 150s for a

sample text file with 101 bytes. System has prompted

creating active object was successful afterwards and

that means the uploading file got completed. The time

output finally was the time to create active object.

SeDas was checked and corresponded with changes on

work directory of the storage node. The sample text file

also was downloaded or shared successfully before key

destruct. Thus the encryption and decryption was done

successfully with key file and life time of key parts. The

file was downloaded and shared successfully before key

file destruct.

2) Performance Evaluation Observations: There was

difference between the I/O process of SeDas and that of

Native system (e.g. pNFS). The difference is that the

computation resource of SeDas client should support

the additional encryption/decryption process. The

performance of SeDas was evaluated against Native

system (without self-destruct data function). The

latency of upload and download with two schemes

(SeDas and Native) under different file sizes was

evaluated. The overhead of encryption and decryption

with two schemes under different file sizes was also

calculated. The latency of the SeDas for upload and

download operations was more. SeDas have increased

the average latency of the Native system by 59.06% and

25.69% for the upload and download, respectively. The

reason for this performance degradation was the

encryption and decryption processes introduced the

overhead. The overhead of SeDas for encryption and

decryption under different file system was also

increased. The throughput was decreased because

upload/download processes required much more CPU

computation and finishing encryption/decryption

processes in the SeDas system, compared with the

Native system. SeDas have reduced the throughput over

the Native system by an average of 59.5% and up to

71.67% for the uploading and SeDas have reduced the

throughput over the Native system by an average of

30.5% and up to 50.75% for the downloading. All these

discussions are compared and summarized in the Table

1.

Table 1. Comparison of SeDas with Native System

Criteria SeDas Native System

Overhead Small increase Less

Throughput Decreased Increased

Latency Increased Decreased

6

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

V. CONCLUSION

Data privacy and security has become increasingly

important in the Cloud environment. This paper

introduced a new approach for protecting data privacy

from attackers who retroactively obtain, through legal

or other means, a users stored data and private

decryption keys. A novel aspect of SeDas approach is

the leveraging of the essential properties of active

storage framework based on T10OSD standard. SeDas:

self-destructing data system based on active storage

framework of cloud computing gives the most optimum

solution to protect the important and private data of the

user from any kind of attack. SeDas causes sensitive

information, such as account numbers, passwords and

notes to irreversibly self-destruct, without any action on

the users part. This SeDas system will help to provide

researchers with further valuable experience to inform

future object-based storage system designs for cloud

services.

REFERENCES
[1] L. Zeng, S. Chen, and Q. Wei, “SeDas: A self-destructing data

system based on active storage framework," ser. 6, vol. 49.

IEEE Transactions, June 2013, pp. 2548-2554.

[2] A. Shamir, “How to share a secret," ACM, pp. 612-613, 1979.

[3] R. Datawipe, “Datawipes," http://www.roadkil.net/.

[4] “Secure erase,"
http://cmrr.ucsd.edu/people/Hughes/SecureErase.shtml.

[5] “Technet sysinternals sdelete," http://technet.microsoft.com.

[6] R. Perlman, “File system design with assured delete," in Third

IEEE Int. Security Storage Workshop (SISW), 2005.

[7] R. Geambasu, T. Kohno, and A. A. Levy, “Vanish: Increasing

data privacy with self-destructing data," 2009.

[8] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved
data self-destruction for protecting data privacy," in Proc.

Second Int. Conf. Cloud Computing Technology and Science

(CloudCom), 2010, pp. 521-528.

[9] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “Fade:

Secure overlay cloud storage with file assured deletion," in
Proc.SecureComm, 2010.

[10] C.Wang, Q.Wang, K. Ren, and W. Lou, “Privacy-preserving

public auditing for storage security in cloud computing," in
Proc. IEEE INFOCOM, 2010.

[11] M. Mesnier, G. Ganger, and E. Riedel, “Object-based storage,"
in IEEE Commun. Mag, ser. 8, vol. 41, August 2003, pp. 84-90.

[12] R. Weber, “Information technology-SCSI object-based storage

device commands (OSD)-2," in Technical Committee T10,
INCITS Std, January 2009.

[13] Y. Kang, J. Yang, and E. L. Miller, “Object-based SCM: An
efficient interface for storage class memories,” in Proc. 27th

IEEE Symp. Massive Storage Systems and Technologies

(MSST), 2011.

[14] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, Reliably

erasing data from ash-based solid state drives," in Proc. 9th
USENIX Conf. File and Storage Technologies (FAST). San

Jose, CA, USA, February 2011.

7

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

