

Summarization of Document using Java

 Priyanka Sarraf

 Yogesh Kumar Meena
 M.Tech Scholar, Banasthali University Assistant Professor, MNIT

 Jaipur, India

Abstract-- Automatic summarization is the process of reducing

a document by a computer program to create summary which

retains the important aspects of the original document. As the

use of whole document is very tedious task so summary helps

identifying the general overview and its importance for us.

Generally, there are two approaches of automatic

summarization: extraction and abstraction. Extractive

methods work by selecting a subset of existing words, phrases,

or sentences in the original text to form the summary.

Whereas, abstractive methods build an internal semantic

representation and then use natural language generation

techniques to create a summary that is closer to what a human

might generate. Such a summary might contain words not

explicitly present in the original. The state-of-the-art

abstractive methods are still quite weak, so most research has

focused on extractive methods.

Each programming language is having its own set of libraries

which helps for reading and summarizes the document. This

paper presents basic steps of summarization of documents, its

challenges and the set of APIs which are available in java and

its related technologies.

Keywords: Document summarization, extraction, Java,

Preprocessing, Stemming.

I. INTRODUCTION

 With the increasing amount of online information, it

becomes extremely difficult to find relevant information to

users. Information retrieval systems usually return a large

amount of documents listed in the order of estimated

relevance. It is not possible for users to read each

document in order to find useful ones. Automatic text

summarization systems helps in this task by providing a

quick summary of the information contained in the

document. An ideal summary in these situations will be

one that does not contain repeated information and

includes unique information from multiple documents on

that topic.

 The Single document summarizer is an application which is

proposed to extract the most important information of the

document. In automatic summarization, there are two

distinct techniques either text extraction or text abstraction.

Extraction is a summary consisting of a number of

sentences selected from the input document. An abstraction

based summary is generated where some text units are not

present into the input document. With extraction based

summary technique, some more features are added based on

Information Retrieval. However, the total system is

alienated into three segments: pre-processing the test

document, sentence scoring based on text extraction and

summarization based on sentence ranking.

 In this approach generic based single document

summarization system is proposed using extraction based

summary techniques.

 II.

SYSTEM

DESCRIPTION

 Goal of extractive text summarization is selecting

the most relevant sentences of the text. The Proposed

method uses statistical and Linguistic approach to find

most relevant sentence. Summarization system

consists of 3 major steps, Preprocessing ,Extraction of

feature terms and algorithm for ranking the sentence

based on the optimized feature weights.

 A.

Pre-processing

 This step involves Sentence segmentation, Sentence

tokenization, Stop word Removal and Stemming.

 1)

Sentence Segmentation

 It is the process of decomposing the given text document

into its constituent sentences along with its word count. In

English, sentence is segmented by identifying the

boundary of sentence which ends with full stop (.) ,

question mark (?), exclamatory mark(!).

 2)

Tokenization

 It is the process

of splitting the sentences into

words by identifying the spaces, comma and special

symbols between the words. So list of sentences and

words are maintained for further processing.

 3)

Stop Word Removal

 Stop words are common words that carry less

important meaning than keywords .This words should be

eliminated otherwise sentence containing them can

influence summary generated.

 4)

Stemming

A word can be found in different forms in the same

document. These words have to be converted to their

original form for simplicity. The stemming algorithm is

used to transform words to their canonical forms. In

this

work, Porter’s

stemmer is

used that splits a word into its

root form using a predefined suffix list.

Jaipur, India

2594

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20929

 B.

Feature Extraction

 After an input document is tokenized and stemmed, it is

split into a collection of sentences. The sentences are ranked

based on four important features:

Frequency, Sentence

Position value, Cue words and Similarity with the Title.

 1)

Frequency

 Frequency is the number of times a word

occurs in a

document. If a word’s frequency in a document is high, then

it can be said that this word has a significant effect on the

content of the document. The total frequency value of a

sentence is calculated by sum up the frequency of every

word in the document.

 2)

Sentence Position

Value

 Position of the sentence in

the text, decides its

importance. Sentences in the beginning defines the

theme of the document whereas end sentences conclude

or summarize the document. The positional value of a

sentence is computed by assigning the highest value to the

first sentence and the lowest value to the last sentence of the

document.

 3)

Cue Words

Cue words are connective expressions

(such as therefore,

hence, lastly, finally, meanwhile or on the other hand) that

links spans of communication and signals semantic relations

in a text.

4)

Similarity with the Title

The similarity with the title

consists of the words in titles

and headers. These words are considered having some extra

weights in sentence scoring for summarization.

C.

Sentence Scoring

 The final score is a Linear Combination of frequency,

Sentence positional value, weights of Cue Words and

Similarity with the title of the document.

D.

Sentence Ranking

 After scoring of each sentence, sentences are arranged in

descending order of their score value i.e. the sentence

whose score value is highest is in top position and the

sentence whose score value is lowest is in bottom position.

E.

Summary Extraction

After ranking the sentences based on their total score the

summary is produced selecting X number of top ranked

sentences where the value of X is provided by the user. For

the readers’ convenience, the selected sentences in the

summary are reordered according to their original positions

in the document.

 Preprocessing

 Porter

Stemming

Algorithm

 Summary

 Fig. 1 Steps of the proposed text summarization technique

III. JAVA API’S

A lot of java APIs is available for summarization of text.

Basic steps of Java APIs can be categorized as follows:

 Reading the document

 Create summary of the document.

A. Reading the document:

 There might be different type of documents which might

be available to get summary. Basically following four types

of documents which we can get are:

 Text File

 Doc File

 Docx File

 PDF file

1) Text File

 A text file can be read just by using java.io package of

j2sdk. For representing and reading the file, File class,

FileInputStream and FileReader classes are available. A

simple piece of code is given below for reading a text file.

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

public String readFile(String filename)

Text Document

Stop

Words

Frequency Sentence

Position

Value

Cue

Words

Similarity

with the Title

Sentence Scoring

Sentence Ranking

Sentence Segmentation

Tokenization

Stop Word Removal

Stemming

2595

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20929

{ String fullContent = null;

 File file = new File (filename);

//Filename is name of file like f1.txt

 try {FileReader reader = new FileReader(file);

 char[] chars = new char[(int) file.length()];

 reader.read(chars);

 fullContent = new String(chars);

 reader.close()} catch (IOException e)

{e.printStackTrace();}

 return fullContent;}

There might several different ways also to read a text file

from java.

2) Doc/Docx File

 .doc files are part binary, part text files. There are

several third party APIs available for reading a .doc file.

The easiest way to "read" a Microsoft doc file is apache

POI api. The Apache POI Project's mission is to create and

maintain Java APIs for manipulating various file formats

based upon the Office Open XML standards (OOXML)

and Microsoft's OLE 2 Compound Document format

(OLE2). In short, you can read and write MS Excel files

using Java. In addition, you can read and write MS Word

and MS PowerPoint files using Java. Apache POI is your

Java Excel solution (for Excel 97-2008). We have a

complete API for porting other OOXML and OLE2

formats and welcome others to participate.

OLE2 files include most Microsoft Office files such as

XLS, DOC, and PPT as well as MFC serialization API

based file formats. The project provides APIs for the

OLE2 Filesystem (POIFS) and OLE2 Document

Properties (HPSF).

Office OpenXML Format is the new standards based XML

file format found in Microsoft Office 2007 and 2008. This

includes XLSX, DOCX and PPTX. The project provides a

low level API to support the Open Packaging Conventions

using openxml4j.

For each MS Office application there exists a component

module that attempts to provide a common high level Java

api to both OLE2 and OOXML document formats. This is

most developed for Excel workbooks (SS=HSSF+XSSF).

Work is progressing for Word documents (HWPF+XWPF)

and PowerPoint presentations (HSLF+XSLF).

A sample code for reading a .doc and docx file using POI

api is given below:

if(filetype.equals(".Doc")||filetype.equals(".docx"))

{ String

extension=filename.substring(filename.lastIndexOf(".")

 + 1, filename.length());

 if(extension.equals("doc"))

 { File docFile=new File(filename); // file object was

created

 FileInputStream finStream=new

 FileInputStream(docFile.getAbsolutePath()); //

file input

 stream with docFile

 HWPFDocument doc=new

HWPFDocument(finStream);// throws

IOException and need to import

org.apache.poi.hwpf.HWPFDocument;

 WordExtractor wordExtract=new WordExtractor(doc);

 // import org.apache.poi.hwpf.extractor.WordExtractor

 String [] dataArray =wordExtract.getParagraphText();

 // dataArray stores the each line from the document

 for(int i=0;i<dataArray.length;i++)

 { document+=dataArray[i];

 // printing lines from the array}

 finStream.close(); //closing fileinputstream }

 else

 { OPCPackage d = OPCPackage.open(fin);

 XWPFWordExtractor xw = new

XWPFWordExtractor(d);

 document=xw.getText();

 System.out.println(filename); }}

3) PDF file

 A PDF file is made up of a sequence of bytes. These

bytes, grouped into tokens, make up the basic objects upon

which higher level objects and structures are built. There are

various set of APIs for reading pdf files. PDFBox is one of

such APIs which was designed by apache. PDFBox makes

these basic objects available in the *org.apache.pdfbox.cos*

package (The COS Model). The organization of these

objects, how to they are read and how to write them is

defined in the file structure of the PDF. In addition a file can

be encrypted to protect the document's content. PDFBox

handles the reading in the *org.apache.pdfbox.pdfparser*

package. Writing of PDF files is handled in the

org.apache.pdfbox.pdfwriter package. Within the file

structure basic objects are used to create a document

structure building higher level objects such as pages,

bookmarks, annotations.

PDFBox makes these higher level objects available through

the *org.apache.pdfbox.pdfmodel* package (The PD

Model).In addition there is a COS representation available

for the PD model if there is a need to inspect the underlying

structure or to handle special cases where the higher level

PD model doesn't provide the functionality needed. It's

always the COS model which is represented in the PDF file.

A sample code for reading a pdf file using POI api is given

below:

import java.io.*;

import org.apache.pdfbox.pdmodel.*;

import org.apache.pdfbox.util.*;

 PDDocument pd;

 BufferedWriter wr;

 try {File input = new File ("C:\\Invoice.pdf");

 File output = new File ("C:\\SampleText.txt");

 pd = PDDocument.load(input);

2596

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20929

 System.out.println(pd.getNumberOfPages());

 System.out.println(pd.isEncrypted());

 pd.save("CopyOfInvoice.pdf");

 PDFTextStripper stripper = new PDFTextStripper();

 wr = new BufferedWriter(new

OutputStreamWriter(new

 FileOutputStream(output)));

 stripper.writeText(pd, wr);

 if (pd != null) { pd.close(); }

 wr.close(); } catch (Exception e){e.printStackTrace();

 }

 }

}

B. Create summary of the document.

 String

 The String class represents character strings. All string

literals in Java programs, such as "abc", are implemented as

instances of this class. Strings are constant; their values

cannot be changed after they are created. String buffers

support mutable strings. Because String objects are

immutable they can be shared. For example:

 String str = "abc";

 is equivalent to:

 char data[] = {'a', 'b', 'c'};

 String str = new String (data);

 Here are some more examples of how strings can be used:

 System.out.println("abc");

 String cde = "cde";

 System.out.println("abc" + cde);

 String c = "abc".substring(2,3);

 String d = cde.substring(1, 2);

 The class String includes methods for examining individual

characters of the sequence, for comparing strings, for

searching strings, for extracting substrings, and for creating

a copy of a string with all characters translated to uppercase

or to lowercase. Case mapping is based on the Unicode

Standard version specified by the Character class.

The Java language provides special support for the string

concatenation operator (+), and for conversion of other

objects to strings. String concatenation is implemented

through theStringBuilder(or StringBuffer) class and

its append method. String conversions are implemented

through the method toString, defined by Object and

inherited by all classes in Java.

 StringTokenizer

The string tokenizer class allows an application to break a

string into tokens. The tokenization method is much simpler

than the one used by the StreamTokenizer class. The

StringTokenizer methods do not distinguish among

identifiers, numbers, and quoted strings, nor do they

recognize and skip comments. The set of delimiters (the

characters that separate tokens) may be specified either at

creation time or on a per-token basis.

An instance of StringTokenizer behaves in one of two ways,

depending on whether it was created with

the returnDelims flag having the value true or false:

 If the flag is false, delimiter characters serve to

separate tokens. A token is a maximal sequence of

consecutive characters that are not delimiters.

 If the flag is true, delimiter characters are

themselves considered to be tokens. A token is thus

either one delimiter character, or a maximal

sequence of consecutive characters that are not

delimiters.

A StringTokenizer object internally maintains a current

position within the string to be tokenized. Some operations

advance this current position past the characters processed.

A token is returned by taking a substring of the string that

was used to create the StringTokenizer object. The

following is one example of the use of the tokenizer. The

code:

 StringTokenizer st = new StringTokenizer ("this is a

test");

 while (st.hasMoreTokens())

{System.out.println(st.nextToken());}

 Prints the following output:

 StringTokenizer is a legacy class that is retained for

compatibility reasons although its use is discouraged in new

code. It is recommended that anyone seeking this

functionality use the split method of String or the

java.util.regex package instead.

The following example illustrates how

the String.split method can be used to break up a string into

its basic tokens:

 String[] result = "this is a test".split("\\s");

 for (int x=0; x<result.length; x++)

 System.out.println(result[x]);

Prints the following output:

2597

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20929

CONCLUSION

This Paper discusses the single document summarization

using extraction method. This paper presents basic steps of

summarization of documents, its challenges and the set of

APIs which are available in java and its related

technologies. This proposed method is implemented in java

and is under development.

REFERENCES

[1] H. P. Luhn, The automatic creation of literature abstracts, in

IBM Journal of Research Development, volume 2, number 2,

pages 159-165, 1958.

[2] Mani, I.: Automatic Summarization. John Benjamins Publishing
Co., Amsterdam (2001).

[3] Wei Liu, WANG, The Document Summary Method based on

Statements Weight and Genetic Algorithm, International
Conference on Computer Science and Network Technology,

2011

[4] Automated Bangla Text Summarization by Sentence Scoring
and Ranking, Md. Iftekharul Alam Efat, IEEE, 2013.

[5] The Porter Stemming Algorithm

[Online].Available:http://tartarus.org/~martin/PorterStemmer/
[6] Mr. Vikrant Gupta, Ms. Priya Chauhan, Dr. Sohan Garg. Mrs.

Anita Borude, Prof. Shobha Krishnan “A Statistical Tool for

Multi-Document Summrization” , International Journal of
Scientific and Research publication, Volume 2, Issue 5, may

2012 ISSN 2250-3153

[7] Chetana Thaokar, Dr.Latesh Malik, Test Model for
Summarizing Hindi Text using Extraction Method, IEEE, 2013

2598

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20929

