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Abstract 

This study has examined the performance of SPCR when there is presence of multicollinearity in 

the data. The situations where the predictor variables are correlated and when the number of 

predictors exceeds the number of observations were considered using both simulated and real 

data sets. The adequacy of SPCR model was compared with the classical principal component 

regression, and stepwise regression using AIC and SIC. The results obtained show that stepwise 

regression performed poorly in both simulated and real data sets. SPCR and classical principal 

component regression compete favourably to stepwise regression. 
   

1.0 Introduction 

It is a well known fact that ordinary least squares regression coefficients estimators may perform 

poorly when there is multicollinearity in the X the matrix of predictor variables and where the 

number of predictors greatly exceeds the number of observations. The variance of the 

components of the ordinary least squares estimator becomes inflated when one or more 

eigenvalues of the predictor matrix are close to zero. This results in an estimate that may have 

low probability of being close to the true value of the vector of regression coefficient β.  

When large number of variables are available in a study (or experiment), it is often natural to 

enquire whether they could be replaced by a fewer number of the variable or of their functions 

without much loss of information for convenience in the presentation, analysis, and 

interpretation. Mclachlan (1992) pointed out that discarding the last few principal component of 

the covariance matrix is less likely to throw away valuable information. Principal components  
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𝑍1, 𝑍2 , … , 𝑍𝑚  which are linear functions of the original k variables 𝑋1, 𝑋2, … , 𝑋𝑘  are suggested 

for this purpose. One good thing about PCA is that once you have found pattern in the data, you 

can compress the data, by reducing the number of dimension in the data, without much loss of 

information.  

In regression analysis, when the number of variables exceeds the number of observations we face 

singularity problem which makes ordinary least square regression practically impossible. In 

situation like this supervised principal component regression seems quite an appealing approach 

because it replaces the k predictor variable with the subset of predictor variables which are 

selected based on their association with the outcome. Supervised principal component regression 

(SPCR) is similar to the classical principal component regression (PCR) except that the classical 

PCR does not establish direct relationship between the response and predictor variables. Frank 

and Friedman (1993) compared principal component regression, partial least squares, ordinary 

least squares, ridge regression,  and stepwise regression in a simulation study (using average 

squared prediction error computed over new observation as the criterion), and found that ridge 

regression came out ahead of the other techniques. Ridge regression is useful when regression is 

used for parameter estimation or control and does not directly involve prediction. The problem of 

ridge regression does not provide insight about the subspace of X that explains the response well. 

One popular method in PCR is to use the principal components corresponding to the k largest 

eigenvalues (Frank and Friedman 1993). The problem with this approach is that the magnitude of 

the eigenvalue depends on X only, and has nothing to do with response variable. Hence it is 

possible that principal components that relate X to the response are excluded because they may 

have small eigenvalues. See Jollife (1982) for several real-life examples. Conversely, the 

approach may include principal component that are unrelated to the response. Consequently the 

method does not generally pick the most important column space of X that explains the response 

well. As an alternative approach is the principal components that have the highest correlation 

with the response, which makes intuitive sense. However, there are criticisms. See Mason and 

Gunt (1985), and  Almoy (1996). In particular Almoy’s  numerical  studies  showed that this 

alternative approach work slightly worse than the component with the largest eigenvalues in the 

prediction context. Bair et al (2004) described a technique they called supervised principal 

components that uses a subset of the predictors that are selected based on their association with 

the outcome. With supervised approach we can extracts information about important predictors 

from both the relationship between Y, and  𝑋1, 𝑋2, … , 𝑋𝑘 , and the correlated predictors  

themselves. The approach computes the  first (or first few) principal component of reduced data 

matrix consisting of only those X variables whose univariate coefficients with response Y exceed 

a certain a certain threshold ѳ. These principal component(s) are then use to build regression 

model which can be used to predict outcome. According to Bair and his group this method 

compares favorably to other techniques. In this study supervised principal component will be 

compared with other variable selection regression methods with aim of coming up with model 

that has highest predictive power.  
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This paper would be organized in six Sections. Section one contains the introduction while the 

description of the supervised principal component regression procedure is contained in section 

two. Section three describes the data used in the analysis. Summary and discussion of the result 

would be contained in Section four. Conclusion would be in Section five while references would 

be contained in Section six.   

2.0 Supervised Principal Component 

Let us assume that there are k predictor variables measured on N observations. And let X be an 

N x k matrix of predictor variables, and y the N x 1 vector of response measurements with 

outcomes in metric form. Here in nutshell is the description of supervised principal component 

regression. 

1. Compute (univariate) regression coefficient for each predictor variable. 

2. Form reduced data matrix consisting of only those features whose univariate coefficient 

exceeds a certain threshold ω in absolute value (ω is estimated by cross validation) 

3. Compute the first (or first few) principal component of the reduced data matrix. 

4. Use the principal component as a predictor variable to compute simple regression with 

the original response variable. 

5. Assess the contribution of the k predictor variables using result of (4). 

6. Build a reduced model using only the selected important variables. 

Assumed that the columns of X (variables) have been centered to have mean zero, the singular 

value decomposition (SVD) of X is  

 X = 𝑍𝐷𝑉 ′         (1) 

Z, D, and V are of dimensions Nxm, mxm, and mxk respectively. D is a diagonal matrix of 

eigenvalues of X, the columns of Z are the principal components, 𝑍1, 𝑍2 , … , 𝑍𝑚, ; these are 

ordered so that  

 𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑𝑚 ≥ 0  ; and V is the matrix of the eigenvectors of X. 

Let τ𝑖be the k vector of standardized regression coefficients for measuring the univariate effect 

of each of the response y. 

 τ𝑖 =  
𝑥𝑗 ′𝑦𝑗

 𝑥 𝑝
          (2) 

At p = 2,  τ𝑖  is synonymous to 𝛽 =   𝑋′𝑋 −1𝑋′𝑌 of the ordinary least squares method. Actually a 

scale estimate 𝜎  is missing in each of the τ𝑖 , but since it is common to all, we can omit it. Let 𝐶ω 

the matrix of the collection of X indices such that   τ𝑖  > ω. We denote by 𝑋𝜔  the matrix 

consisting of X corresponding to 𝐶ω. The SVD of 𝑋𝜔  is  

 𝑋ω =  𝑍ω 𝐷ω 𝑉ω ′           (3) 
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ω is a cutoff value of  τ𝑖 , and 𝑋ω  are only those predictor variables whose coefficients  τ𝑖  

exceed the cutoff ω. Letting the transformed data 𝑍ω = (𝑧ω,1 , 𝑧ω,2 , … , 𝑧ω,m ), we call 𝑧ω,1  the 

first supervised principal component of X matrix, and so on. We now fit a univariate linear 

model with response y and predictor 𝑧ω,1 .  

 𝑦 𝑠𝑝𝑐 ,𝑤 =  𝛼 + 𝜂  𝑧ω,1          (4) 

Note that since  𝑧ω,1 is a left singular vector of 𝑋𝜔 , it has mean zero and unit norm. Hence 𝜂 =

 𝑧ω,1 ′𝑦 , and the intercept 𝛼 is the mean of y. We use the cross-validation to estimate the best 

value of ω. In this paper only the first principal component  𝑧ω,1  is considered. 

Note that from (3) 

   𝑍ω = 𝑋ω 𝑉ω 
′ 𝐷ω 

−1 

                      = 𝑋ω 𝑈ω           (5) 

So, for example 𝑧ω,1 is a linear combination of the column of  𝑋𝜔 ;  𝑧ω,1 = 𝑋ω 𝑢ω,1. Hence our 

linear regression model estimate can be viewed as a restricted linear model estimate using all the 

predictor variables in 𝑋ω .  

  𝑦 𝑠𝑝𝑐 ,𝑤 =  𝛼 + 𝜂  𝑧ω,1 𝑢ω,1 

                          =  𝛼 + 𝑋ω 𝛽 ω         (6) 

Where 𝛽 ω =  𝜂 𝑢ω,1. In fact, by padding 𝑢ω,1 with zero corresponding to those variables excluded 

by 𝐶ω our estimate is a linear in all k predictor variables 

Given a test vector 𝑥∗ we can make predictions from our regression model as follows: 

1. We center each component of 𝑥∗ using the means we derived on the training data; 

                  𝑥∗
𝑗⃪𝑥∗

𝑗 − 𝑥 𝑗  . 

2. 𝑦 ∗ =  𝛼 + 𝑥ω
∗′
𝑢ω,1 = 𝛼 + 𝑥ω

∗′
𝛽 ω  

where 𝑥ω
∗  is the appropriate sub-vector of 𝑥ω

∗  

In the case of uncorrelated predictors, it is easy to verify that the supervised principal 

components procedure has the desired behavior: it yields all predictors whose standardized 

univariate coefficients exceed  in absolute term. 
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2.12 Important score and a reduced predictor  

Having derived the predictor 𝑧ω,1  how do we assess the contributions of the p individual 

features? It is not true that the features that passed the screen  τ𝑖 > 0 are necessarily important 

or are the only important features. Instead, we compute the important score as the correlation 

between each feature and 𝑧ω,1  

 𝑖𝑚𝑝 = 𝑐𝑜𝑟(𝑥𝑗 , 𝑧ω,1 )         (7) 

Feature j with large values of  𝑖𝑚𝑝  contributes most to the prediction of y. 

Typically all p predictor variables will have non-zero important scores.  

 

The ability of supervised principal component to build a model based on only a small number of 

inputs is very important for practical applications. For example, a response variable with highly 

correlated predictor variables will produce unsatisfactory results. 

                                                                                                     (Bair et al 2004) 

3.0 Materials and methods 

In order to assess the performance of supervised principal component regression method, two 

simulated data sets with correlated predictors and a real life data where the number of 

observations are smaller than the number of predictors were used. 

For simulated data the sample sizes of 50 and 100 with the numbers of predictors of 7 and 5 

respectively were generated. The real data used were collected from the Nigeria National Bureau 

of Statistics Publication 2010 .The data is on gross domestic product and the factors affecting it. 

Among the factors we studied are agriculture(X1), mining and quarrying(X2), manufacturing(X3), 

public utility(X4), building and construction(X5), transportation(X6), telecommunication(X7), 

wholesale and retail trade(X8), hotel and restaurants(X9), finance and insurance(X10), real estate 

and business services(X11), community social and personal services(X12), and producers of 

government services(X13). The data covered a period of 11 years. 

4.0 Results, and Discussion 

4.1 Result of simulated data 

The two generated data sets were used to test the adequacy of the model obtained by SPCR with 

those from classical principal component regression, stepwise regression and linear regression 

model built using predictor variables selected by SPCR. With logarithm transform of Akaike 

information criterion (AIC) and Schwarz information criterion; 
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 𝐴𝐼𝐶 =
2𝑘

𝑛
+ 𝑙𝑛  

𝑅𝑠𝑠

𝑛
  

  𝑆𝐼𝐶 = 
𝑘

𝑛
ln 𝑛 + 𝑙𝑛  

𝑅𝑠𝑠

𝑛
  

                                                            (Gujarati 2003) 

we obtained the table of residual analysis as 

Table 1 

Average of the residual result of Simulated Data 

                             Residual Analysis 

Analytical Method Average Error   AIC SIC 

SPCR 0.33 28.0102 28.2696 

OLS (computed 

using SPCR 

selected predictors) 

5378.321 23.9038 24.1332 

Stepwise Regression -1191.330 30.1965 30.4259 

Classical PCR 384369.3 27.8449 28.0722 

 

Table 1 shows that OLS (computed using SPCR selected predictors) has the minimum estimated 

error with AIC and SIC values of 23.9038 and 24.1332 respectively, followed by SPCR, classical 

PCR, and then stepwise regression. 

This shows that OLS (computed using SPCR selected predictors) model is more adequate than 

others. The AIC and SIC values of SPCR and classical PCR are very close to each other, with 

this one may say that both methods perform equally well.  

 

 

4.2 Result of real data  

The application of SPCR on the real data gave the model for predicting GDP in Nigeria as  

 𝐺𝐷𝑃 = 511.0773 + 0.0005𝑋3 − 0.0001𝑋6 + 0.0037𝑋11 − 0.0056𝑋12 − 0.0019𝑋13 

When the original values of the variables selected SPCR were used in building linear regression 

model we obtained GDP model as 

 𝐺𝐷𝑃 = 1357 − 0.0267𝑋3 + 0.0322𝑋6 − 0.6280𝑋11 + 0.8660𝑋12 + 3.3210𝑋13 

  

 

 

The classical principal component regression model was obtained as 
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 𝐺𝐷𝑃 = 0.0017𝑋1 + 0.0007𝑋2 + 0.0002𝑋3 + 0.0001𝑋4 + 0.0001𝑋5 + 0.0001𝑋6 +

                                 0.0001𝑋7 + 0.0007𝑋8 + 0.0002𝑋10 + 0.0001𝑋11 

The stepwise regression model using the standardized coefficient was obtained as 

 𝐺𝐷𝑃 = −35.540 + 0.432𝑋1 + 0.930𝑋2 + 0.066𝑋4 + 0.106𝑋6 + 0.050𝑋7 +

                              0.032𝑋10 + 0.106𝑋12 + 0.289𝑋13 

The presence of 𝑋13 in three out of the four models and its coefficients indicate that 𝑋13 is a very 

strong factor affecting GDP in Nigeria. The four models were used in computing the residual 

using AIC and SIC. The residual analyses are in the table 2 below; 

Table 2 

Residual Analysis of Real Data 

                             Residual Analysis 

Analytical Method Average Error   AIC SIC 

SPCR 12.3010 12.1542 12.6244 

OLS (computed    

using SPCR 

selected predictors) 

15.3499 8.0253 8.4956 

Stepwise Regression -206257 31.6661 32.1364 

Classical PCR 7.6272 7.4235 7.8937 

 

 

  

 Table 2 shows that classical principal component regression model is the most adequate of all 

the models studied followed by OLS (computed using SPCR selected predictors), SPCR, and 

stepwise regression model.  

 

5.0 Conclusion 

The results show that stepwise regression performed poorly in both simulated and real data sets 

with highest value of AIC and SIC. In the simulated data sets OLS (computed using SPCR 

selected predictors) performed better than other PCR, SPCR, and stepwise regression methods. 

In the real data set with more number of predictors than observation classical principal 

component regression outperformed the other methods. These indicate that SPCR and classical 

PCR competes favourably to stepwise regression when the data is heavily affected by 

multicollinearity.     
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