

 Support Vector Mechanism Based Citation Parser

G. Guru Brahmam A. Bhanu Prasad

M.Tech Software Engineering, Associate Professor, Department of IT,

Vardhaman College of Engineering, Vardhaman College of Engineering,

Hyderabad, India. Hyderabad, India.

Abstract

The huge amount of researchers’ publication list pages

is available on the Web, which could be an important

resource for many value-added applications, such as

citation analysis and academic network analysis.

Bibliographical references that appear in journal

articles can provide valuable hints for subsequent

information extraction. We describe our statistical

machine learning algorithms for locating and parsing

such references from HTML medical journal articles.

Reference locating identifies the reference sections and

then decomposes them into individual references. We

formulate reference locating as a two-class

classification problem based on text and geometric

features. We implement and compare two reference

parsing algorithms. One relies on sequence statistics

and trains a Conditional Random Field. The other

focuses on local feature statistics and trains a Support

Vector Machine to classify each individual word, and

then a search algorithm systematically corrects low

confidence labels if the label sequence violates a set of

predefined rules.

Keywords: Document Object Model (DOM), Support

Vector Machine (SVM), Conditional Random Field

(CRF).

1. Introduction
Citations play important roles for both the rhetorical

structure and the semantic content of the articles, and as

such, citation information has shown to benefit many

text mining tasks including information retrieval,

information extraction, summarization, and question

answering. Web pages often contain up-to-date

information of the researchers, because some

researchers often provide their new papers on their own

publication list pages before they are formally

published on journal magazines or conferences. Hence,

it is possible to learn about the state-of-the-art

knowledge and technologies from those researchers

publication list pages. Although publication

information are really important, it is not easy to

develop an automatic system to extract all publication

records from publication list pages, because many

publication list pages are crafted manually by

researchers themselves, and the layouts of them could

be quite different due to different researchers affinities.

In this paper, we call a single publication record as a

citation record. Automatic metadata extraction from

medical journals is key to the affordable creation of

citations in MEDLINE
®

, the flagship database of the

U.S. National Library of Medicine (NLM), containing

over 17 million records and searched over 3 million

times per day worldwide. Analyzing references, which

are citations usually placed at the end of scientific

publications, is an important pre-processing step for

generating several MEDLINE bibliographic data items,

e.g., identifying Comment-On/Comment-In articles

(commentary article pairs), assigning MeSH (Medical

Subject Heading) indexing terms

through analyzing the

MeSH terms already assigned to the cited articles, and

many others. We therefore formulate reference location

as a two-class classification. After rendering the HTML

article in a Browser, geometric and text features are

extracted from the zones in the HTML article, and an

SVM classifier is used to classify these zones as either

reference zones or non-reference zones. The third

observation in the previous paragraph is a useful

constraint which can expedite the process and increase

its reliability.

2. Related work
Many researches had been conducted to extract regular

patterns from semi-structured Web pages, and these

researches are mainly related to wrapper generation.

CiteSeer is a well-known and successful citation

indexing system developed at NEC Research

Institute
13

. CiteSeer uses Web search engines and

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

heuristics to crawl the Web and download PDF and

PostScript articles. After converting to text, CiteSeer

uses heuristics to locate the reference section, and then

parses each reference to extract fields such as title,

author, year of publication, and so on. Similar systems

include ISI Web of Knowledge
26

and Google Scholar
27

.

We focus on HTML articles. By rendering the HTML

articles in a Web browser (e.g. Microsoft Internet

Explorer), geometric information (locations and sizes

of zones) can be extracted, and these are important

features for reliably locating bibliographical references.

There does not appear to be work reported on

specifically locating references appearing in HTML

articles. A related problem, which has been carefully

studied recently by several researchers, is mining data

records from Web pages. Data records are a list of

similarly structured items, e.g., a list of products on

sale. Liu et al. exploit the Web page structure and

mostly depend on string matching of HTML tag

sequences to detect data records
14

. Zhai and Liu

extended this work, and used visual information and

tree matching to detect data records, and then designed

a partial tree alignment algorithm to align data records,

and extract information from each one
23

. Reis et al.

assumed that certain Web page groups share a common

format and layout characteristics, and designed a tree

matching algorithm to extract news content from news

pages
19

. These data record mining algorithms have

been used to extract consumer product reviews, news,

Internet forum postings, and several other applications.

These algorithms are mostly based on HTML DOM

(Document Object Model) tree and HTML tags. The

duplication of similar DOM tree structures is the

primary cue for locating and aligning data records and

for extracting information from them. In our reference

locating problem, the text is a much more reliable

feature compared to HTML tags. We therefore

formulate the reference locating as a two-class

classification based on geometric and text features.

Reference parsing, on the other hand, has received far

more attention. Existing reference parsing methods can

be generally divided into two categories: rule based

methods and those based on machine learning. Rule

based methods usually rely on a set of rules based on a

domain expert’s observation. Chowdhury
4

and Ding et

al.
7

have used template mining techniques. Templates

are manually crafted to summarize the recognizable

patterns formed by either the data and/or text

surrounding the data. A set of rules is usually

associated with the templates, and when text matches to

the templates, the data are extracted according to the

rules. Day et al.
5, 6

extended the template mining

approach, and used INFOMAP, a hierarchical

framework, for knowledge (template) representation.

Huang et al. used a gene sequence alignment tool,

BLAST (Basic Local Alignment Search Tool), to

extract citation metadata
10

. Journal publishers usually

require authors to strictly follow predefined citation

styles, and careful editorial checking and correction are

usually conducted before publishing. Therefore, for a

small set of journals, rule-based methods can be very

successful. On the other hand, rule-based methods

require domain experts to design the rules and maintain

them over time. This approach also prevents

adaptability and it is difficult to tune the system due to

the rigidity of the rules. As mentioned, for MEDLINE

data, over 5,200 journals from hundreds of publishers

need to be processed. Hence, automatic reference

parsing through rule-based methods poses a challenge

due to the large variation of citation styles. In contrast,

machine learning approaches exhibit good adaptability

by automatically learning the knowledge from training

samples, and have therefore attracted a great deal of

interest. Parmentier and Belaïd developed a concept

network to hierarchically represent and recognize

structured data from bibliographic citations
16

. Besagni

et al. took a bottom-up approach based on Part-of-

Speech (PoS) tagging
2

. In this approach, basic tags,

which are easily recognized, are first grouped into

homogeneous classes. Confusing tokens are then

classified by either a set of PoS correction rules or a

structure model generated from correctly detected

records. Hidden Markov Model (HMM), a successful

machine learning tool for information extraction from

sequences, has also been studied for parsing references,

e.g., Takasu applied HMM for parsing erroneous

references
22

. Conditional Random Field, another

popular sequence model, is recently reported to achieve

better performance compared to HMM
18

. We have

therefore included CRF as one of our reference parsing

methods. Another frequently adopted machine learning

method for information extraction is the Support

Vector Machine (SVM) classifier. Han et al. took a

two-stage approach for metadata extraction from the

header part of research papers
9

. Okada et al. combined

SVM and HMM for bibliographic component

extraction
17

. We have implemented a reference parsing

algorithm, which uses the SVM to classify each

individual word. Intuitively, adjacent words in a

reference usually are more likely to belong to the same

entity. To exploit this important local dependency, we

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

use not only the features extracted from the word itself,

but also those extracted from its neighbours.

2.1 Single word classification using SVM
From each word, 15 features are extracted. The first 14

are the same binary features listed in Table 3. The 15th

feature is the normalized position, i.e., the position of

the word normalized by the total number of the words

in the reference. Intuitively, we expect adjacent words

in a reference to usually have a higher probability of

belonging to the same entity. In order to utilize these

local contextual dependencies, the features used for the

classification are extracted from not only the word

itself, but also from its neighbours. As done for

reference locating, we adopted LibSVM with RBF

kernel function for this single word classification.

Similarly, the two parameters, (penalty parameter of the

errors) and Cγ(RBF parameter), were also selected

through exhaustive grid-search using cross-validation

on training samples.

2.2 Search algorithm for finding optimal label

sequence

Due to the high accuracy of single word classification,

most references can already be correctly parsed. For

those that do not pass the global rule test, nearly all of

them are close to the correct label sequence with only a

few words mislabelled. The goal is then to identify and

correct those mislabelled words. We present a

systematic search algorithm guaranteed to find a label

sequence that is valid (obeys the global rules) and is

most-likely (has the highest probability). The key to

finding the most-likely and valid label sequence is then

to search possible label sequence modifications in the

ascending order of their costs. The search stops at the

first label sequence, which obeys the global rules.

Because there are 1−NM possible modifications, it is

computationally prohibitive to calculate costs for all

possible modifications and then sort them. We present

an algorithm which enumerates sequence modifications

in ascending order of their costs. We first calculate the

costs for all) possible single-token modifications (only

one word’s label is modified) and sort them in

ascending order. This is not computationally expensive.

We arrange these) single-token modifications in the

middle line of Figure 2 (marked with a dashed

bounding box) in ascending order of their costs. <1>

indicates the single-token modification with the

minimum cost, and so on. It is easy to see that the first

and second sequence modifications must be the first

two single-token modifications. In each subsequent

column we list all possible multi-token modifications,

which are all possible combinations of the previous

single-token modification and all other previous single-

and multi- token modifications. For example, in

Column 3, the previous single-token modification is

<2>, and there is only one other modification, i.e., <1>,

so there is only one multi-token modification, i.e.,

<2,1>. Let us assume that <1> and <2> are the

modifications to the same word, so the modification

<2,1> is meaningless. We mark it with a dashed circle

and abandon it. In Column 4, the previous single-token

modification is <3>, and all other possible previous

modifications are <1> and <2>, so we have two multi-

token modifications, as shown in Column 4, <3,1> and

<3,2>. Let us assume the cost of <3,1> is less than that

of <4>, but the cost of <3,2> is greater than that of <4>,

and therefore, we place <3,1> on top of <4> and <3,2>

below <4>. Similarly, we create Columns 5, 6, and so

on. In this example, <1>, <2>, <5> are assumed to be

single-token modifications of the same word, and <3>

and <4> are single-token modifications of the other two

words. Meaningless multi-token modifications are

marked with dashed circles. For each column, let us

call the modifications above the single-token

modification the upper column, and the modifications

below the single-token modification the lower column.

Although the modifications in each column are ordered,

the modifications in the lower column may have higher

cost than the modifications in the later columns.

However, a key observation is that the modifications in

an upper column must be smaller than those in the

lower column and the later columns. This is the key for

creating new columns dynamically and enumerating all

modifications in ascending order of their costs. The

algorithm is shown below

Algorithm

1. Calculate costs for all single-token modifications,

and sort them in ascending order. N(M-1)

2. Test the first single-token modification. If it obeys

the rules, go to the end, otherwise continue.

3. Test the second single-token modification. If it obeys

the rules, go to the end, otherwise continue.

4. Create Column 3, and save all modifications into an

ascending ordered list.

5. Repeat for K=3, 4… N (M-1)-1:

a. Repeat:

i. Pop up and test the first modification from the

ordered list.

ii. If it obeys the rules, go to the end, otherwise

continue.

b. Until single-word modification <K> is tested.

c. Create Column K+1, and save the modifications

into the ordered list.

6. Finish testing remaining ordered list.

7. End

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

It is clear that the algorithm is still an exhaustive

search, but it searches from the label sequence

generated by single word classification, which, in our

case, is close to the correct solution. Most searches,

therefore, terminate very quickly. Because the search is

conducted in the ascending order of costs, it is

guaranteed to find the most-likely modification that

obeys the rules. In an actual implementation, it is of

course better to set a limit on the maximum number of

modifications to be tested to avoid lengthy

computation. In our implementation, the search

terminates after 10,000 modifications have been tested.

In practical systems, if the search does not terminate

when the limit is reached, this is an indication that the

parsing may not be accurate.

3. Analysis

This has been clearly demonstrated by the single word

classification experiments. Regardless of the number of

training samples, the accuracies are significantly

improved if combining the features extracted from the

immediate left and right neighbors (45 features).

Combining features from an additional two adjacent

neighbors (75 features), on the other hand, achieves

only slight accuracy improvements. This is in

agreement with many studies of statistical sequence

models, where usually only the first-order correlation is

modeled, and the first-order Markov Chain is the

underlying graphic model. Global rule correction is

effective. We believe that the global rule correction is a

good practical heuristic to correct minor errors. When it

fails, it also serves as a good indicator for low

confidence parsing. The article title contains the most

heterogeneous text, and therefore is the most difficult

entity to extract. Both CRF-parsing and SVM-parsing

achieve the lowest accuracy in Title chunk

identification. On the other hand, both algorithms

achieve high accuracy (around 99%) for entities having

distinctive features, such as Number, Volume, Year and

Pagination. Comparing Tables 5 and 7, when training

with 600 references, CRF-parsing and SVM-parsing

essentially achieve the same overall performance: about

99% accuracy at word level and above 97% accuracy at

chunk level. SVM-parsing missed only 3 Publication

Years. SVM is a sophisticated classifier, which is

expected to achieve better performance on entities

having distinctive features. On the other hand, CRF

achieves 1% higher accuracy on Title chunk

identification. Titles contain heterogeneous text, i.e.,

having indistinctive features. It is likely that CRF, by

modeling the entire sequence, has better chance to label

them correctly. The performance may be further

improved, if the advantages of SVM (sophisticated

local classifier) and CRF (powerful sequence model)

can be combined. Most references in our collection are

citations to journal papers (Examples (a)~(g) and (k) in

Table 1). There are few errors in this kind of “standard”

references; even organizational authors (Examples (k)

in Table 1) can usually be successfully labeled. Only a

very small percentage of references are citations to

reports and books (Examples (h)~(j) in Table 1), and

our current algorithm finds it difficult to label their

Unknown (<U>) entities. For the edited books

especially, the long word sequence of the editors

sometimes confuses the algorithms. Further research is

warranted to solve this problem.

4. Conclusion

We have presented approaches for locating and parsing

references in HTML medical journal articles. We

formulate reference locating as a two-class

classification, and have demonstrated that text and

geometry are very reliable for locating references, and

an SVM classifier based on these features can achieve

near 100% accuracy. The first order correlation

between reference words is important contextual

information, and must be used in reference parsing

algorithms. We implemented and compared two

reference parsing algorithms. CRF-parsing focuses on

modelling the word sequence with Conditional Random

Fields, and SVM-parsing concentrates on local single

word classification. The overall performance of these

two approaches is about the same: above 97% accuracy

at chunk level.

References

[1] S. Chawathe, H. Garcia-Molina and J. Hammer:

The TSIMMIS project: integration of heterogeneous

information sources. Journal of Intelligent Information

Systems 8(2):117-132 (1997)

[2] B. Chidlovskii, U. Borgho®, and P. Chevalier:

Towards sophisticated wrapping of Web-based

information repositories. The 5th International RIAO

Conference, Mon-treal, Quebec, Canada, pp. 123-135

(1997)

[3] I. Muslea, S. Minton and C. Knoblock: A

hierarchical approach to wrapper induction. The third

annual conference on Autonomous Agents pp. 190-197

(1999)

[4] W. Cohen, M. Hurst and L. Jensen: A exible

learning system for wrapping tablesand lists in HTML

documents. The 11th International World Wide Web

conference (2002)

[5] C.-N. Hsu and M.-T. Dung: Generating nite-state

transducers for semi-structured data extraction from the

Web. Information Systems 23(8), pp. 521-538 (1998)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

[6] D.Pinto, A. McCallum, X. Wei and W. Bruce Croft:

Table Extraction Using Conditional Random Fields.

The 26th ACM SIGIR (2003)

[7] N. Kushmerick: Wrapper induction: efficiency and

expressiveness Artificial Intelligence. Artificial

Intelligence 118(1-2):15-68 (2000)

[8] B. Liu, R. Grossman, and Y. Zhai Mining: data

records in Web pages. The ACMSIGKDD International

Conference on Knowledge Discovery & Data Mining

pp. 601-606 (2003)

[9] Y. Zhai and B. Liu: Web Data Extraction Based on

Partial Tree Alignment. The 14th International

Conference on World Wide Web pp. 76-85 (2005)

[10] C.-H Chang and S.-C Lui: IEPAD: Information

extraction based on pattern discovery. The 10th

International Conference on World Wide Web pp. 223-

231 (2001)

[11] Y. Zhai and B. Liu: NET - A system for extracting

Web data from °at and nested data records. The 6th

International Conference on Web Information Systems

Engineering (2005)

[12] D.S. Hirschberg: A linear space algorithm for

computing maximal common subsequences.

Communications of the ACM V.18, 6, pp. 341-343

(1975)

[13] K.-H. Yang, J.-M. Chung and J.-M. Ho: PLF: A

Publication List Web Page Finder for Researchers. The

2007 IEEE/WIC/ACM International Conference on

Web Intelligence (WI-2007) (2007)

[14] C.-C. Chen, K.-H. Yang and J.-M. Ho: BibPro: A

Citation Parser Based on Sequence Alignment

Techniques. The IEEE 22nd International Conference

on Advanced Information Networking and

Applications (AINA-08) (2008)

[15] A.K. McCallum, MALLET: A Machine Learning

for Language Toolkit, http://mallet.cs.umass.edu. 2002.

[16] F. Parmentier and A. Belaïd, “Logical structure

recognition of scientific bibliographic references,”

Proc. ICDAR, pp. 1072-1076, 1997.

[17] T. Okada, A. Takasu and J. Adachi,

“Bibliographic component extraction using support

vector machines and hidden Markov models,” Proc.

ECDL, pp. 501-512, 2004.

[18] F. Peng and A. McCallum, “Accurate information

extraction from research papers using conditional

random fields,” Proc. of Human Language Technology

Conference, pp. 329-336, 2004.

[19] D.C. Reis, P.B. Golgher, A. S. Silva, A. F.

Laender, “Automatic Web news extraction using tree

edit distance,” Proc. WWW, pp. 502-511, 2004.

[20] F. Sebastiani, “Machine learning in automated text

categorization”, ACM Computing Surveys, vol. 34, no.

1, pp. 1-47, 2002.

[21] C. Sutton and A. McCallum, “An introduction to

conditional random fields for relational learning,” book

chapter in Introduction to Statistical Relational

Learning. Edited by L. Getoor and B. Taskar. MIT

Press. 2006.

[22] A. Takasu, “Bibliographic attribute extraction

from erroneous references based on a statistical

model,” Proc. JCDL, pp. 49-60, 2003.

[23] Y. Zhai, B. Liu, “Structure data extraction from

the Web based on partial tree alignment,” IEEE Tran.

Knowledge and Data Engineering, vol. 18, no. 12, pp.

1614-1628, 2006.

[24] J. Zou, D. Le, G.R. Thoma, “Structure and Content

Analysis for HTML Medical Articles: A Hidden

Markov Model Approach,” Proc. DocEng, pp. 119-

201, 2007.

[25] J. Zou, D. Le, G.R. Thoma, “Extracting a sparsely-

located named entity from online HTML medical

articles using support vector machine,” SPIE Proc.

Document Recognition and Retrieval (SPIE-DR&R),

pp. 68150P (1-10), 2008.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

