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Abstract 
 

The huge amount of researchers’ publication list pages 

is available on the Web, which could be an important 

resource for many value-added applications, such as 

citation analysis and academic network analysis.   

Bibliographical references that appear in journal 

articles can provide valuable hints for subsequent 

information extraction. We describe our statistical 

machine learning algorithms for locating and parsing 

such references from HTML medical journal articles. 

Reference locating identifies the reference sections and 

then decomposes them into individual references. We 

formulate reference locating as a two-class 

classification problem based on text and geometric 

features.   We implement and compare two reference 

parsing algorithms. One relies on sequence statistics 

and trains a Conditional Random Field. The other 

focuses on local feature statistics and trains a Support 

Vector Machine to classify each individual word, and 

then a search algorithm systematically corrects low 

confidence labels if the label sequence violates a set of 

predefined rules. 

Keywords: Document Object Model (DOM), Support 

Vector Machine (SVM), Conditional Random Field 

(CRF). 

 

1. Introduction  
Citations play important roles for both the rhetorical 

structure and the semantic content of the articles, and as 

such, citation information has shown to benefit many 

text mining tasks including information retrieval, 

information extraction, summarization, and question 

answering. Web pages often contain up-to-date 

information of the researchers, because some 

researchers often provide their new papers on their own 

publication list pages before they are formally 

published on journal magazines or conferences. Hence, 

it is possible to learn about the state-of-the-art 

knowledge and technologies from those researchers 

publication list pages. Although publication 

information are really important, it is not easy to 

develop an automatic system to extract all publication 

records from publication list pages, because many 

publication list pages are crafted manually by 

researchers themselves, and the layouts of them could 

be quite different due to different researchers affinities. 

In this paper, we call a single publication record as a 

citation record.   Automatic metadata extraction from 

medical journals is key to the affordable creation of 

citations in MEDLINE
®

, the flagship database of the 

U.S. National Library of Medicine (NLM), containing 

over 17 million records and searched over 3 million 

times per day worldwide. Analyzing references, which 

are citations usually placed at the end of scientific 

publications, is an important pre-processing step for 

generating several MEDLINE bibliographic data items, 

e.g., identifying Comment-On/Comment-In articles 

(commentary article pairs), assigning MeSH (Medical 

Subject Heading) indexing terms
 

through analyzing the 

MeSH terms already assigned to the cited articles, and 

many others. We therefore formulate reference location 

as a two-class classification. After rendering the HTML 

article in a Browser, geometric and text features are 

extracted from the zones in the HTML article, and an 

SVM classifier is used to classify these zones as either 

reference zones or non-reference zones. The third 

observation in the previous paragraph is a useful 

constraint which can expedite the process and increase 

its reliability. 

2. Related work 
Many researches had been conducted to extract regular 

patterns from semi-structured Web pages, and these 

researches are mainly related to wrapper generation. 

CiteSeer is a well-known and successful citation 

indexing system developed at NEC Research 

Institute
13

. CiteSeer uses Web search engines and 
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heuristics to crawl the Web and download PDF and 

PostScript articles. After converting to text, CiteSeer 

uses heuristics to locate the reference section, and then 

parses each reference to extract fields such as title, 

author, year of publication, and so on. Similar systems 

include ISI Web of Knowledge
26 

and Google Scholar
27

. 

We focus on HTML articles. By rendering the HTML 

articles in a Web browser (e.g. Microsoft Internet 

Explorer), geometric information (locations and sizes 

of zones) can be extracted, and these are important 

features for reliably locating bibliographical references. 

There does not appear to be work reported on 

specifically locating references appearing in HTML 

articles. A related problem, which has been carefully 

studied recently by several researchers, is mining data 

records from Web pages. Data records are a list of 

similarly structured items, e.g., a list of products on 

sale. Liu et al. exploit the Web page structure and 

mostly depend on string matching of HTML tag 

sequences to detect data records
14

. Zhai and Liu 

extended this work, and used visual information and 

tree matching to detect data records, and then designed 

a partial tree alignment algorithm to align data records, 

and extract information from each one
23

. Reis et al. 

assumed that certain Web page groups share a common 

format and layout characteristics, and designed a tree 

matching algorithm to extract news content from news 

pages
19

. These data record mining algorithms have 

been used to extract consumer product reviews, news, 

Internet forum postings, and several other applications. 

These algorithms are mostly based on HTML DOM 

(Document Object Model) tree and HTML tags. The 

duplication of similar DOM tree structures is the 

primary cue for locating and aligning data records and 

for extracting information from them. In our reference 

locating problem, the text is a much more reliable 

feature compared to HTML tags. We therefore 

formulate the reference locating as a two-class 

classification based on geometric and text features. 

Reference parsing, on the other hand, has received far 

more attention. Existing reference parsing methods can 

be generally divided into two categories: rule based 

methods and those based on machine learning. Rule 

based methods usually rely on a set of rules based on a 

domain expert’s observation. Chowdhury
4 

and Ding et 

al. 
7 

have used template mining techniques. Templates 

are manually crafted to summarize the recognizable 

patterns formed by either the data and/or text 

surrounding the data. A set of rules is usually 

associated with the templates, and when text matches to 

the templates, the data are extracted according to the 

rules. Day et al. 
5, 6 

extended the template mining 

approach, and used INFOMAP, a hierarchical 

framework, for knowledge (template) representation. 

Huang et al. used a gene sequence alignment tool, 

BLAST (Basic Local Alignment Search Tool), to 

extract citation metadata
10

.  Journal publishers usually 

require authors to strictly follow predefined citation 

styles, and careful editorial checking and correction are 

usually conducted before publishing. Therefore, for a 

small set of journals, rule-based methods can be very 

successful. On the other hand, rule-based methods 

require domain experts to design the rules and maintain 

them over time. This approach also prevents 

adaptability and it is difficult to tune the system due to 

the rigidity of the rules. As mentioned, for MEDLINE 

data, over 5,200 journals from hundreds of publishers 

need to be processed. Hence, automatic reference 

parsing through rule-based methods poses a challenge 

due to the large variation of citation styles.  In contrast, 

machine learning approaches exhibit good adaptability 

by automatically learning the knowledge from training 

samples, and have therefore attracted a great deal of 

interest. Parmentier and Belaïd developed a concept 

network to hierarchically represent and recognize 

structured data from bibliographic citations
16

. Besagni 

et al. took a bottom-up approach based on Part-of-

Speech (PoS) tagging
2

. In this approach, basic tags, 

which are easily recognized, are first grouped into 

homogeneous classes. Confusing tokens are then 

classified by either a set of PoS correction rules or a 

structure model generated from correctly detected 

records.  Hidden Markov Model (HMM), a successful 

machine learning tool for information extraction from 

sequences, has also been studied for parsing references, 

e.g., Takasu applied HMM for parsing erroneous 

references
22

. Conditional Random Field, another 

popular sequence model, is recently reported to achieve 

better performance compared to HMM
18

. We have 

therefore included CRF as one of our reference parsing 

methods.  Another frequently adopted machine learning 

method for information extraction is the Support 

Vector Machine (SVM) classifier. Han et al. took a 

two-stage approach for metadata extraction from the 

header part of research papers
9

. Okada et al. combined 

SVM and HMM for bibliographic component 

extraction 
17

. We have implemented a reference parsing 

algorithm, which uses the SVM to classify each 

individual word. Intuitively, adjacent words in a 

reference usually are more likely to belong to the same 

entity. To exploit this important local dependency, we 
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use not only the features extracted from the word itself, 

but also those extracted from its neighbours. 

2.1 Single word classification using SVM  
From each word, 15 features are extracted. The first 14 

are the same binary features listed in Table 3. The 15th 

feature is the normalized position, i.e., the position of 

the word normalized by the total number of the words 

in the reference.  Intuitively, we expect adjacent words 

in a reference to usually have a higher probability of 

belonging to the same entity. In order to utilize these 

local contextual dependencies, the features used for the 

classification are extracted from not only the word 

itself, but also from its neighbours.  As done for 

reference locating, we adopted LibSVM with RBF 

kernel function for this single word classification. 

Similarly, the two parameters, (penalty parameter of the 

errors) and Cγ(RBF parameter), were also selected 

through exhaustive grid-search using cross-validation 

on training samples. 

2.2 Search algorithm for finding optimal label 

sequence 

Due to the high accuracy of single word classification, 

most references can already be correctly parsed. For 

those that do not pass the global rule test, nearly all of 

them are close to the correct label sequence with only a 

few words mislabelled. The goal is then to identify and 

correct those mislabelled words. We present a 

systematic search algorithm guaranteed to find a label 

sequence that is valid (obeys the global rules) and is 

most-likely (has the highest probability). The key to 

finding the most-likely and valid label sequence is then 

to search possible label sequence modifications in the 

ascending order of their costs. The search stops at the 

first label sequence, which obeys the global rules. 

Because there are 1−NM possible modifications, it is 

computationally prohibitive to calculate costs for all 

possible modifications and then sort them. We present 

an algorithm which enumerates sequence modifications 

in ascending order of their costs.  We first calculate the 

costs for all ) possible single-token modifications (only 

one word’s label is modified) and sort them in 

ascending order. This is not computationally expensive. 

We arrange these ) single-token modifications in the 

middle line of Figure 2 (marked with a dashed 

bounding box) in ascending order of their costs. <1> 

indicates the single-token modification with the 

minimum cost, and so on. It is easy to see that the first 

and second sequence modifications must be the first 

two single-token modifications. In each subsequent 

column we list all possible multi-token modifications, 

which are all possible combinations of the previous 

single-token modification and all other previous single- 

and multi- token modifications. For example, in 

Column 3, the previous single-token modification is 

<2>, and there is only one other modification, i.e., <1>, 

so there is only one multi-token modification, i.e., 

<2,1>. Let us assume that <1> and <2> are the 

modifications to the same word, so the modification 

<2,1> is meaningless. We mark it with a dashed circle 

and abandon it. In Column 4, the previous single-token 

modification is <3>, and all other possible previous 

modifications are <1> and <2>, so we have two multi-

token modifications, as shown in Column 4, <3,1> and 

<3,2>. Let us assume the cost of <3,1> is less than that 

of <4>, but the cost of <3,2> is greater than that of <4>, 

and therefore, we place <3,1> on top of <4> and <3,2> 

below <4>. Similarly, we create Columns 5, 6, and so 

on. In this example, <1>, <2>, <5> are assumed to be 

single-token modifications of the same word, and <3> 

and <4> are single-token modifications of the other two 

words. Meaningless multi-token modifications are 

marked with dashed circles.  For each column, let us 

call the modifications above the single-token 

modification the upper column, and the modifications 

below the single-token modification the lower column. 

Although the modifications in each column are ordered, 

the modifications in the lower column may have higher 

cost than the modifications in the later columns. 

However, a key observation is that the modifications in 

an upper column must be smaller than those in the 

lower column and the later columns. This is the key for 

creating new columns dynamically and enumerating all 

modifications in ascending order of their costs. The 

algorithm is shown below 

 

Algorithm 

1. Calculate costs for all single-token modifications, 

and sort them in ascending order. N(M-1)  

2. Test the first single-token modification. If it obeys 

the rules, go to the end, otherwise continue.  

3. Test the second single-token modification. If it obeys 

the rules, go to the end, otherwise continue.  

4. Create Column 3, and save all modifications into an 

ascending ordered list.  

5. Repeat for K=3, 4… N (M-1)-1:  

a. Repeat:  

i. Pop up and test the first modification from the 

ordered list.  

ii. If it obeys the rules, go to the end, otherwise 

continue.  

b. Until single-word modification <K> is tested.  

c. Create Column K+1, and save the modifications 

into the ordered list.  

6. Finish testing remaining ordered list.  

7. End 
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It is clear that the algorithm is still an exhaustive 

search, but it searches from the label sequence 

generated by single word classification, which, in our 

case, is close to the correct solution. Most searches, 

therefore, terminate very quickly. Because the search is 

conducted in the ascending order of costs, it is 

guaranteed to find the most-likely modification that 

obeys the rules. In an actual implementation, it is of 

course better to set a limit on the maximum number of 

modifications to be tested to avoid lengthy 

computation. In our implementation, the search 

terminates after 10,000 modifications have been tested. 

In practical systems, if the search does not terminate 

when the limit is reached, this is an indication that the 

parsing may not be accurate. 

3. Analysis  

This has been clearly demonstrated by the single word 

classification experiments. Regardless of the number of 

training samples, the accuracies are significantly 

improved if combining the features extracted from the 

immediate left and right neighbors (45 features). 

Combining features from an additional two adjacent 

neighbors (75 features), on the other hand, achieves 

only slight accuracy improvements. This is in 

agreement with many studies of statistical sequence 

models, where usually only the first-order correlation is 

modeled, and the first-order Markov Chain is the 

underlying graphic model.  Global rule correction is 

effective. We believe that the global rule correction is a 

good practical heuristic to correct minor errors. When it 

fails, it also serves as a good indicator for low 

confidence parsing.  The article title contains the most 

heterogeneous text, and therefore is the most difficult 

entity to extract. Both CRF-parsing and SVM-parsing 

achieve the lowest accuracy in Title chunk 

identification. On the other hand, both algorithms 

achieve high accuracy (around 99%) for entities having 

distinctive features, such as Number, Volume, Year and 

Pagination.  Comparing Tables 5 and 7, when training 

with 600 references, CRF-parsing and SVM-parsing 

essentially achieve the same overall performance: about 

99% accuracy at word level and above 97% accuracy at 

chunk level. SVM-parsing missed only 3 Publication 

Years. SVM is a sophisticated classifier, which is 

expected to achieve better performance on entities 

having distinctive features. On the other hand, CRF 

achieves 1% higher accuracy on Title chunk 

identification. Titles contain heterogeneous text, i.e., 

having indistinctive features. It is likely that CRF, by 

modeling the entire sequence, has better chance to label 

them correctly. The performance may be further 

improved, if the advantages of SVM (sophisticated 

local classifier) and CRF (powerful sequence model) 

can be combined.  Most references in our collection are 

citations to journal papers (Examples (a)~(g) and (k) in 

Table 1). There are few errors in this kind of “standard” 

references; even organizational authors (Examples (k) 

in Table 1) can usually be successfully labeled. Only a 

very small percentage of references are citations to 

reports and books (Examples (h)~(j) in Table 1), and 

our current algorithm finds it difficult to label their 

Unknown (<U>) entities. For the edited books 

especially, the long word sequence of the editors 

sometimes confuses the algorithms. Further research is 

warranted to solve this problem. 

4. Conclusion  

We have presented approaches for locating and parsing 

references in HTML medical journal articles. We 

formulate reference locating as a two-class 

classification, and have demonstrated that text and 

geometry are very reliable for locating references, and 

an SVM classifier based on these features can achieve 

near 100% accuracy.  The first order correlation 

between reference words is important contextual 

information, and must be used in reference parsing 

algorithms. We implemented and compared two 

reference parsing algorithms. CRF-parsing focuses on 

modelling the word sequence with Conditional Random 

Fields, and SVM-parsing concentrates on local single 

word classification. The overall performance of these 

two approaches is about the same: above 97% accuracy 

at chunk level. 
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