
Survey of Dictionary Based Compression

Aarti Parekh
Department of Information Technology

Shri S‟ad Vidya Mandal Institute of Technology

Bharuch 392-001, Gujarat, India

Mrunali Solanki
Department of Information Technology

Shri S‟ad Vidya Mandal Institute of Technology

Bharuch 392-001, Gujarat, India

Abstract—Dictionary Based Compression is a useful

technique through which we can encode variable-length strings

of symbols as single tokens. There are number of algorithms

available for Dictionary Based Compression. It uses less

computing resources so it is very effective compression

technique. The purpose of this paper is to present and analyze a

variety of dictionary based algorithms.

Keywords—Compression, Dictionary encoding, Text

Compression , Lossy , Lossless

I. INTRODUCTION

Compression is representing information in a compact form

rather than its original form. With increasing amount of data

being stored, sufficient information retrieval and storage in

the compressed area has become a major concern [4].

Compression is the process that will reduce the total number

of bits needed to represent some information. There are lots

of data compression algorithms which are available to

compress files of different formats.

The aim of data compression is to reduce redundancy in

stored or communicated data, so we can increase effective

data density. Dictionary based encoding process is known as

substitution encoding. In this process the encoder maintain a

data structure known as „Dictionary‟[3]. The encoder matches

the substrings chosen from the original text and finds it in the

dictionary; if a successful match is found then the substring is

replaced by a reference to the dictionary in the encoded file.

II. TYPES OF COMPRESSION

In data compression classification, There are two types:

Fig 1: Types of Data Compression Techniques

A. Lossy Compression
As the name of Lossy Compression, There may be some loss
of data in order to achieve higher compression. It is
fundamentally different from lossless Compression [7]. It is
generally done on analog data stored digitally, with the
primary application being graphics and sound files. In some
cases lossy method can produce much smaller compressed
file.

B. Lossless Compression

Lossless data compression is used to compact files or data

into a smaller form. No loss of data in order to achieve high

compression. Lossless data compression has the constraint

that when data is uncompressed, it must be identical to the

original data that was compressed. Graphics, audio, and

video compression such as JPEG, MP3, and MPEG on the

other hand use lossy compression schemes which throw away

some of the original data to compress the files even further.

III. DICTIONARY BASED TECHNIQUES

They are used to a type of adaptive dictionary when

performing acronym replacements in technical literature. The

standard way to use this adaptive dictionary is to spell out the

acronym, then put its abbreviated substitution in parentheses.
From then in the text should automatically invoke a mental

substitution.

A. Lempel Ziv Algorithms

Generally compression schemes used statistical modeling.

But in 1977 and 1978, Jacob Ziv and Abraham Lempel

described a pair of compression methods using an adaptive

dictionary. These two algorithms introduce new techniques

that used dictionary-based methods to achieve new

compression ratios.

Fig 2: Family of Lempel Ziv Algorithm

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041102

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

960

1. LZ77 :

 The first compression algorithm in 1997 produced by Ziv

and Lempel is commonly referred to as LZ77. It is dictionary

based & lossless data compression algorithm. No prior

knowledge is required to solve [5].The input sequence is

carried out by the encoder, putting into a sliding window

which consist two parts: A search buffer which consist

recently encoded sequence and a Look ahead buffer which

consist the next portion of sequence to be encoded. Then

longest match will found and put it into a search buffer. The

output is in the form of a triple <offset, length, next

symbol>.If no match found then null pointer is generated[1].

 The length of offset to match and length must be limited

to some extent. Usually the offset is encoded on 12-16 bits so

it is limited from 0 to 65535 symbols. The match length is

encoded on 8 bit. The algorithm for LZ77 is given below:

 In LZ77 , Most of compression time is used in

searching for longest match whereas the decompression is

quick as each reference is replaced with the string which it

points to.

2. LZ78:

 In 1978, Jacob Ziv and Abraham Lempel introduce new

dictionary based scheme which is known as LZ78.This

compression algorithm maintains explicit dictionary. Both the

side dictionary has to be built for encoding and decoding and

they must follow the same rule to ensure that they used an

identical dictionary. The output by the algorithm consist of

two elements:<i, c> where „i‟ is an index referring to the

longest matching dictionary entry and first non matching

symbol. The algorithm for LZ78 is given below:

 The Encoding Done By LZ78 Is Fast Compare To

LZ77. The Important Property Of LZ77 That LZ78 Preserves

Is Decoding Is Faster Than Encoding .The Decompression Is

Faster Compared To The Process Of Compression.

IV. COMPARATIVE ANALYSIS

We focus on to compare the performance of LZ77 and

LZ78.To find the efficiency of any compression algorithm is

achieved by two important parameters like how much amount

of compression achieved and time used by encoding and

decoding algorithms. We have testing some practical

performance on above mentioned two techniques LZ77 and

LZ78.Table 1 shows comparison between LZ77 and LZ78

based on BPC measurement.

Compression Ratio

Compression ratio is the ratio between the original size of the

file and the compressed size of the file it is calculated as

Table 1.Comaprison of BPC for LZ77 and LZ78 algorithms

SR NO. FILE

NAME
FILE SIZE LZ77 LZ78

BPC BPC

1 Mybook1 768771 4.57 3.92

2 Mybook2 610856 3.93 3.81

3 Mybook3 246814 3.81 4.68

4 paper1 39611 3.84 4.6

5 Paper2 49379 2.93 3.84

6 Paper3 93695 2.98 3.92

7 Object1 21504 5.41 5.58

8 Prog1 111261 3.75 3.95

9 Prog2 377109 4.37 4.33

10 Prog3 82199 4.1 4.24

Average 3.969 4.287

while (lookAheadBuffer not empty)

 {

get a reference (position, length) to longest

match;

if (length > 0) {

output (position, length, next symbol);

shift the window length+1 positions along;

}

 Else

 {

output (0, 0, first symbol in the lookahead

buffer);

shift the window 1 character along;

}

 }

w := NIL;

while (there is input){

K := next symbol from input;

if (wK exists in the dictionary) {

w := wK;

} else {

output (index(w), K);

add wK to the dictionary;

w := NIL;

}

}

Compression Ratio =

Original Size

Compressed Size

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041102

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

961

Fig 3: Comparison of compression ratio of LZ77 & LZ78 algorithm

V. CONCLUSION

Dictionary based Compression is an important field of

research due to its wide range of this paper we performed a

survey on various lossless dictionary based compressing.

Techniques. Paper focus mainly on algorithm LZ77 and

LZ78. Comparative analysis is provided for the discussed

techniques based on the compression ratio achieved by each

technique.

REFERENCES

[1] Amit Jain, Kamaljit I. Lakhtaria, “comparative study of dictionary

based compression algorithms on text data,”, International Journal of
Computer Engineering and Applications, Volume VI, Issue II, May 14.

[2] Rupinder Singh,Brar Bikramjeet singh, “ A Survey on Different
Compression Techniques and Bit Reduction Algorithm for
Compression of Text/Lossless Data”, International Journal of
Advanced Research in Computer Science and Software Engineering,
Volume 3, Issue 3, March 2013

[3] Burrows M., and Wheeler, D. J. 1994. A Block-Sorting Lossless Data
Compression Algorithm. SRC Research Report 124, Digital Systems
Research Center.

[4] Mark Nelson, Jean-Loup Gailly, “The Data Compression book” 2nd
Edition

[5] Ziv. J and Lempel A., “A Universal Algorithm for Sequential Data
Compression”, IEEE Transactions on Information Theory 23 (3), pp.
337–342, May 1977

[6] Przemyslaw Skibinski, “Reversible Data transforms that improve
effectiveness of universal lossless data compression”, Ph.D thesis,
Department of Mathematics and Computer Science, University of
Wroclaw, 2006

[7] Mohammad Banikazemi, “LZB: Data Compression with Bounded
References”, Proceedings of the 2009 Data Compression Conference,
IEEE Computer Society, 2009.

[8] Fiala E.R., and D.H. Greene, “Data Compression with finite
windows”, Communications of the ACM 32(4):490-505, 1989.

[9] Arup Kumar Bhattacharjee, Tanumon Bej, Saheb Agarwal
“Comparison Study of Lossless Data Compression Algorithms for Text
Data” IOSR Journal of Computer Engineering (IOSR-JCE).

.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041102

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

962

