
Survey of Lossless Data Compression Algorithms 
 

 

                        Himali Patel                                      Unnati Itwala                                        Roshni Rana 
Dept of Information Technology                  Dept of Information Technology            Dept of Information Technology 

SVMIT Engineering College                        SVMIT Engineering College                  SVMIT Engineering College 

Bharuch, India                                                Bharuch, India                                            Bharuch, India 

 

 

Kruti Dangarwala 

Associate Professor 

Dept of Information Technology 

SVMIT Engineering College 

Bharuch, India 

  

 
Abstract:-    The main goal of data compression is to decrease 

redundancy in warehouse or communicated data, so growing 

effective data density. It is a common necessary for most of the 

applications. Data compression is very important relevancy in 

the area of file storage and distributed system just because of in 

distributed system data have to send from and to all system. 

Two configuration of data compression are there “lossy” and 

“lossless”. But in this paper we only focus on Lossless data 

compression techniques. In lossless data compression, the 

wholeness of data is preserved. Data compression is a technique 

that decreases the data size, removing the extreme information. 

Data compression has many types of techniques that decrease 

redundancy. The methods which mentioned are Run Length 

Encoding, Shannon Fanon, Huffman, Arithmetic, adaptive 

Huffman, LZ77, LZ78 and LZW with its performance. 

Keywords: Data Compression, Lossy compression, Lossless 

compression, Run Length Encoding,Huffman, Shannon Fano, 

Arithmetic, Lz77,Lz78, LZW. 

I. INTRODUCTION  

Compression is the art of representing information in a compact 

form rather than its original or uncompressed form. Data 

Compression can be configure as lossy or lossless [1]. Lossless 

compression techniques rebuild the original data from the 

compacted file without any loss of data. Lossless technique is used 

when the original data of a source are so important that we can’t 

provide to lose any details. Examples of similar sources data are 

images, text etc that preserved for authorized reason, some computer 

practicable files, etc. Data compression [2] is a method of encoding 

rules that allows essential reduction in total number of bits to store 

or transmit a file. The algorithm which decreases some part of data 

is called lossy data compression but in this paper we are go for 

lossless data compression technique. Data compression methods can 

be classified in many ways [3, 4]. This paper examines the 

performance of the Run Length Encoding Algorithm, Huffman 
Encoding Algorithm, Shannon Fano Algorithm, Adaptive Huffman 
Encoding Algorithm, Arithmetic Encoding Algorithm and Lempel 

Ziv Welch Algorithm.  
 

II. TYPES OF DATA COMPRESSION 

Data Compression methods are divided into two 

categories. 

 

a. Lossless Compression 

b. Lossy Compression 

 

Fig. 1. Types of Data Compression Tehniques 

A. Lossless Compression 

Lossless technique is used when the original data of a source are 

so important that we can’t provide to lose any details. The main goal 

of this compression technique is to compress the file by decreasing 

the information in such a way that there is a no loss when decrypting 

any file back in to the original file [5, 8, 9]. Example of lossless data 

compression technique is text compression. the popular file format 

like ZIP file format that is used for compression of data files. It is an 

application of lossless data compression.  

This Lossless data compression can be grouped into two 

categories [15],[16]: 

 

 
 

Fig. 2. Types of Lossless Compression 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040926

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

926



1) Entropy based encoding 

This technique isn’t dependent on definite characteristics 

of medium [6, 7]. In this method of data compression of the 

algorithm begins by first counting the frequency of every 

symbol according to its event in the file. For stated symbols 

of original file, these newly symbols are fixed and aren’t  

dependent on the content of file. The new symbols length is 

variable and it varies on the frequency of include symbols of 

original file. 

2) Dictionary based encoding 

      Dictionary based algorithms don’t encode single symbols 

as variable length bit strings [10], they encode variable length 

strings of symbols as single tokens.The encoder finds the 

match pair of  string in dictionary from original text and if 

this match is found it replaces with its regard in the 

dictionary. 

B. Lossy Compression 

    The goal of lossy compression is not to regenerate an 

complete copy of the source information after decomposition 

but prior a version of it which is feel by the receptive as a true 

copy.This technique doesn’t generate the exact original file 

for example, the same copy but it gives the output with some 

lost information. An original message can’t be rebuilded by 

decoding a process. Thus, this technique can’t be appropriate 

to textual data but it can be apply on video, audio, images etc 

[11].  

III.    COMPRESSION ALGORITHM  

A. Run Length Encoding  

     Run Length Encoding or simply RLE is the simplest 

technique of data compression algorithms. The successive 

sequences of symbols are identified as runs and the others are 

as non runs in this algorithm. This algorithm uses those runs 

to compress the original source file while keeping all the non-

runs with out using for the compression process. For 

example, the text “aaabbccccd” is examined as a source to 

compress, taken the first 3 letters as a non-run having a length 

3, and the next 7 letters taken as a run having length 7, since 

symbol a is repeated.  

B. Shannon Fano  

This coding process developed to create a binary code tree 

by Claude E. Shannon and Robert M. Fano in 1960. Shannon 

Fano coding is very the easiest method for implement as 

compared to any other methods. Based upon their 

probabilities it encodes the messages. There is Different 

codes have different numbers of bits. The algorithm is 

described as below[17]:- 

Step1: 

    For a given list of symbols,  

develop a corresponding list of probabilities or frequency 

counts so that each symbol’s relative frequency of occurrence 

is known.  

 

Step2:   

    Sort the list of symbols according to frequency of their,  

with the most frequently occurring symbols at the top and the 

least common at the bottom.  

 

Step3:   

      Divide the list into two parts,  

with the total frequency counts of the upper half being as 

close to the total of the bottom half as possible.  

 

Step4:   

         The upper half of the list is assigned the binary digit 0, 

and the lower half is assigned the digit 1. This means that the 

codes for the symbols in the first half will all start with 0, and 

the codes in the second half will all start with 1. 

 

Step5:   

   Recursively apply the steps 3 and 4  

to each of the two halves, subdividing groups and adding bits 

to the codes until each symbol has become a corresponding 

code leaf on the tree. 

C. Huffman Coding 

Huffman Coding is developed by David Huffman in 1950. 

Many times Huffman Coding performs better than the 

Shannon Fano Coding. In this coding the characters in a data 

file are converted in to binary code. Two types categories of 

Huffman Encoding have been proposed: Static Huffman 

Algorithm and Adaptive Huffman Algorithm. Static Huffman 

Algorithms first count the frequencies and then generate a 

common tree for the compression and decompression 

processes. Adaptive Huffman algorithms generate the tree 

while counting the frequencies and there will be two trees in 

both the processes [12, 13]. The algorithm are as follows 

[17]:- 

The nodes are arranged in ascending order. 

 

Step1:   

             Two nodes with the lowest frequency is    located. 

Step2:  

              The two least node is added and an internal node of 

this two node is created and the added sum of the 

two node is given as it’s weight. 

Step3: 

              The internal node is now added to the list and the 

two node as it’s child. 

Step4: 

             One of the child node is assigned 1 and other as 0 

during coding. 

Step5:   

               Previous steps are repeated till there is no other 

node left in the tree. The free node is root of the tree. 

 

D. Adaptive huffman encoding 

 Adaptive Huffman coding was first generate independently 

by Faller in 1973 and Gallager in 1978. Knuth assisted 

improvements in the original algorithm in 1985 and the 

resulting algorithm is known as algorithm FGK. A more 

current version of this coding is described by Vitter in 1987 

and called as algorithm V [17]. 

ENCODER                           

Initialize_model(); 

do { 

c = getc( input ); 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040926

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

927



encode( c, output ); 

update_model( c ); 

} while ( c != eof) 

 

DECODER 

Initialize_model(); 

while ( c = decode (input)) != eof) { 

putc( c,output) 

update_model( c ); 

} 

 

E. Arithmatic Encoding: 

The main goal of Arithmetic coding is to appoint an interval 

to each possible symbol. Then a decimal number is appointed 

to this interval. The algorithm begins with an interval of 0 

and 1. After every input symbol from the alphabet is read, the 

interval is divided into a smaller interval in apposite to the 

input symbol’s probability. This interval starts the new 

interval and it is divided into parts according to probability of 

symbols the input alphabet. This is repeated for every input 

symbol. And, at the end, any floating point number from the 

final interval terminate  the input data. 

F. LZ77 

  LZ77 developed by Jacob Ziv and Abraham Lempel in 1977. 

A dictionary is a part of the previos encoded sequence. The 

encoder search into the input sequence within a sliding 

window. This algorithm assume patterns in the input stream 

appear close together. Any pattern that resort over period 

longer than the search buffer size will not be captured. A 

better compression method would save frequently appearing 

patterns in the dictionary. 

 
Encoding-Pseudo code algorithms are as follows[17]:- 

 

Step1:  
    Check look-ahead buffer is empty or not 
Step2:  
     If not empty, look for the longest match in search buffer. 
Step3: 

          If match is found print output as (offset from window 

boundary, length of match, next symbol in lookahead buffer) and 

shift window by length+1 else print output as (0,0,first symbol in 

look-ahead buffer) and shift window by 1. 
Step4:   
    Loop until the look ahead buffer is empty. 

 

G. LZ78 

This compression algorithm developed by Jacob Ziv and 

Abraham Lempel in 1978. LZ78 inserts one- or multi-character, 

non-overlapping, clear patterns of the message to be encoded in 

a Dictionary [15]. It keeps an open dictionary.  

 

The compression algorithm are as follows [17] :- 

 

Dictionary  empty ; Prefix  empty ; DictionaryIndex  

 1; 

while(characterStream is not empty) 

{  Char  next character in characterStream; 

      if(Prefix + Char exists in the Dictionary) 

             Prefix  Prefix + Char ; 

       else 

         {    if(Prefix is empty) 

                     CodeWordForPrefix   0 ; 

              else 

                     CodeWordForPrefix  DictionaryIndex for 

Prefix ; 

               Output: (CodeWordForPrefix, Char) ; 

          insertInDictionary( ( DictionaryIndex , Prefix 

+ Char) ); 

          DictionaryIndex++ ; 

          Prefix  empty ; 

   } 

} 

if(Prefix is not empty) 

 CodeWordForPrefix  DictionaryIndex for Prefix; 

     Output: (CodeWordForPrefix ,   ) ; 

} 

 

H. LZW 

  LZW algorithm is denoted by the Lempel–Ziv–Welch 

developed by Abraham Lampel , Jacob Zev and Terry Welch 

in 1984 and it  is based on LZ78. A dictionary that is indexed by 

“codes” is used. The dictionary is supposed to be initialized with 

256 entries (indexed with the ASCII codes & that is 0 within 

255) representing the ASCII table. 

 

 The algorithm are as follows [17]:- 

 

Set w=NIL 

   loop 

         read a character k 

         if wk exists in the dictionary 

                  w=k 

else 

      Output the code for w add wk to the dictionary 

w=k 

end loop  
  

IV.    MEASURING COMPRESSION PERFOMANCE  

 

A. Compression Ratio 

Is a percentage that outputs from dividing the compression 

size(in bits) by the original file size(in bits) and then 

multiplying the result by 100%[4]. 

 

                                                                          *100%             

                                                                                    

 

Compression Ratio = 

Original Size 

Compressed Size 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040926

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

928



B. Compression Time 

Time is taken for both compression and decompression must 

be taken into examined as in some cases decompression time 

and in some cases compression time to be considered is 

necessary and in some cases both of them are necessary. 

C. Entropy 

Entropy is the measurement of the totality of information in 

file. It is number that is conclusion from dividing the 

compression size in bits by number of symbols in the original 

file and scale as bits per symbol[4]. 

 

V.CONCLUSION 

 
In this paper we need of compression in which of the 

situations lossy and lossless methods can be used. There are 
different compression techniques discussed in detail 
information. We done main focus in this paper is on various 
data compression methods like dictionary based and entropy 
based are described. In entropy based technique the RLE 
(Run length encoding) is not used in much but Shannon Fano 
and Huffman encoding algorithm are the two methods which 
are better than RLE algorithm. But Shannon Fano and 
Huffman compression both  are  almost same but the 
Huffman coding is better than Shanon Fano algorithm and in 
dictionary based algorithm there is LZW method gives best 
and accurate result. 

REFERENCES 

 

[1] S.R. Kodituwakku and U. S. Amarasinghe “Comparison of lossless 
data compression algorithms For text data” Indian Journal of Computer 
Science and Engineering Vol 1 No 4 416-425 

[2] Shrusti Porwal, Yashi Chaudhary, Jitendra Joshi, Manish Jain “Data 
Compression Methodologies for Lossless Data and Comparison 
between Algorithms” International Journal of Engineering Science and 
Innovative Technology (IJESIT) Volume 2, Issue 2, March 2013 

[3] Introduction to Data Compression, Khalid Sayood, Ed Fox (Editor), 
March 2000. 

[4] Haroon Altarawneh and Mohammad Altarawneh, “Data Compression 
Techniques on Text Files:A Comparison Study” International Journal 
of Computer Applications (0975 – 8887) Volume 26– No.5, July 2011 

[5] Maninder Pal Singh and Navpreet Singh “A Study of various standards 
for text compression techniques” 

[6] Senthil Shanmugasundaram and Robert Lourdusamy, “A Comparative 
Study Of Text Compression Algorithms”. International Journal of 
Wisdom Based Computing, Vol. 1 (3), December 2011. 

[7] Arup Kumar Bhattacharjee, Tanumon Bej, Saheb Agarwal 
“Comparison Study of Lossless Data Compression Algorithms for Text 
Data” IOSR Journal of Computer Engineering (IOSR-JCE) Volume 11, 
Issue 6 (May. - Jun. 2013). 

[8] Mark Nelson and Jean-Loup Gailly, “The Data Compression book” 2nd 
Edition. 

[9] Kesheng, W., J. Otoo and S. Arie, 2006. Optimizing bitmap indices 
with efficient compression, ACM Trans. Database Systems, 31: 1-38.  

[10] Data Compression Conference (DCC '00), March 28-30, 2000, 
Snowbird, Utah. 

[11] Introduction to Data Compression, Khalid Sayood, Ed Fox (Editor), 
March 2000. 

[12] S.R. Kodituwakku and U.S. AmaraSinghe “Compression of Lossless 
Data Compression Algorithms for Text Data” Indian Journal of 
Computer Science and Engineering Vol 1 No 4 416-425. 

[13] Fano R.M., “The Transmission of Information”, Technical Report 
No.65, Research Laboratory of Electronics, M.I.T., Cambridge, Mass.; 
1949. 

[14] Huffman D.A., “A method for the construction of minimum 
redundancy codes”, Proceedings of the Institute of Radio Engineers, 40 
(9), pp. 1098–1101, September 1952. 

[15] M. Pal Singh and N. Singh, “A Study of Various Standards for Text 
Compression Techniques”. 

[16] D. Chudasama, K. Parmar, D. Patel, K. Dangarwala, S. Shah, “ Survey 
of Image Compression Method Lossless Approach” IJERT ISSN 2278-
0181 Vol, 4 Issue 03, March-2015. 

[17] T.Patel, J. Anjela, P. Choudhary, K. Dangarwala , “Survey of Text 
Compression Algorithms”, ISSN 2278-0181 Vol, 4 Issue 03, March-
2015. 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040926

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

929


