
Survey On Exception Handling In SOA

Vinod S. Patil

M.Tech student, Abha Gaikwad-Patil College

of Engg, Nagpur, Maharashtra, India.

Pragati Patil

 HOD, Department of M. Tech(CSE),

Abha Gaikwad-Patil College of Engg,

Nagpur, Maharashtra, India.

 Parul Bhanarkar

 Assistant Professor, Department of

M.Tech(CSE), Abha Gaikwad-Patil

College of Engg, Nagpur, Maharashtra,

India.

ABSTRACT

Today, Service-Oriented Architecture (SOA) is a popular

design paradigm for distributed systems. Services are

performing an increasingly important role in modern

application development and composite application. One may

ask how to successfully implement SOA. The objective of the

study to examine the key issues of the user's negative attitude

towards introduction of SOA design. It is the fear of

complexity that the Service-Oriented Architecture (SOA)

brings with its layers. Most of the composite applications

needed to be reliable and available, however it may appear

more difficult to achieved, due to the multi-layered

architecture of SOA. To reduce the fear of complexity, to

reduce the risk as well as to generate light weight message

usable by all types of clients (users) when introducing SOA

architecture, it is necessary to use error handling and recovery

methods in order to increase system fault tolerance This topic

looks at various error handling considerations associated with

design of reusable services. It provides a guideline about error

handling considerations apply during SOA analysis and

design phases.

Keywords

BPEL, Choreography, Error Handling, ESB, Services, SOA,

SOAP, WSDL.

1. INTRODUCTION
Computer-based infrastructures are a necessity for many

companies to handle their daily work today. The information

system infrastructure of most companies is based on

distributed systems, which consist of multiple independent

computers connected by a network. A common design

paradigm for distributed systems is Service-Oriented

Architecture (SOA) [6].

The concept of service-oriented architecture (SOA) has been

introduced for solving the problem of ensuring effective,

reliable and secure interaction of complex distributed systems.

SOA assumes that such systems are constructed from separate

functional application modules (services) that have interfaces,

defined by common rules (WSDL - description), and a

dedicated invoke mechanism (SOAP messages).

SOA is a business centric information technology

architectural approach that promotes integrated and reusable

business processes or services. In SOA, service is a

fundamental element that can be independently developed and

evolved over time. Each service is a self describing,

composable, open software component. Business Process

Execution Language for Web Services (BPEL4WS) was

proposed for depicting interaction of web services in order to

provide a process service. BPEL can arrange different fine-

grained services or business processes with many capabilities

into a requested coarse-grained business processes. Service

composition refers to the interoperation of autonomous and

heterogeneous web services. BPEL provides an ideal way to

composite services within SOA into complete business

processes. However, web services usually communicate over

internet connections that are not highly reliable. Web services

can raise exceptions due to logical and execution errors [1].

BPEL uses provisions for exception handling and detecting

failures, however, the inclusion of such provisions is a tedious

assignment for the business process designer. Just like in

monolithic applications, error handling becomes a significant

process in the design of SOA applications as SOA

applications integrate heterogeneous IT systems across the

organizational boundaries, vendor and partner IT assets.

Focusing on error handling analysis early in the analysis and

design phases ensures that appropriate error handling

standards/guidelines are put in place for modules in different

platforms. This paper identifies common error handling

considerations such that architects and designers can address

the issues while designing SOA Solutions.

2. REVIEW
Business processes specified in BPEL, which will interact

with partner processes through operation invocations on web

services. Owing to web service distributed, heterogeneous and

highly volatile nature, BPEL process is always inherently

vulnerable to exceptions, such as connection error, may cause

certain sub-process of composite services unavailable,

obstructing thus the successful execution of the business

process [3]. Web services can also raise exceptions due to

logical and execution errors. During the execution of BPEL

process, three kinds of exceptions: connection exception,

logic exception and system exception may occur. Due to

network instability, connection exception has not been

rejected in the BPEL scenario and can only be detected by the

execution environment such as connection refuses exception,

serialization / deserialization error, service binding exception,

response time-out exception and so on. Executing of an

invoke activity in BPEL process may cause the connection

exception. The programmer should catch the exception and

add some common process such as retry, ignore to solve it. It

is not only a duplicated work for the service invokers to write

the repeat code, but also makes the BPEL process or web

service client obscure and redundancy.

3. SOA STRUCTURE
The basic assumption of SOA is that there are many

consumers that require services. In literature, consumers are

also referred to as clients or customers. These terms are used

interchangeably here. On the other side, there are many

providers that provide services on the network. These two

groups have to be linked together in a dynamic and adaptive

way. This is usually done by a service broker [9], [10].

Service providers register their services at the broker

(registry), service consumers request a service from the

service broker, which returns a known provider for the

requested service. Consumer and provider agree on the

semantics. The consumer then binds himself to the service

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

provider and uses the service. The structure of this

architecture is shown in Figure. 1.

 Figure 1: SOA Structure

3.1 SOA-specific Errors and Failures

In terms of fundamental concepts of dependability [11],

threats for computer systems include errors, faults and

failures. An errors are that parts of the system state that may

cause a subsequent failure: a failure occurs when an error

reaches the service interface and alters the service. A fault is

the supposed or hypothesized cause of an error. All faults are

gathered into three major fault classes for which defenses

need to be devised: design faults, physical faults, interaction

faults. We proceed from the assumption that most of the

errors and failures occur during service binding and

invocation, messages transferring and requests processing by

web service. In this paper we specified different types of

SOA-specific errors and failures (see Table 1).

Table 1: SOA-specific errors and failures

Sr.

No
Type of error/failure

Error

/failure

domain

1 Error in Target Name Space

Client-

side

binding

errors

2 Error in web service name

3 Error in service port name

4 Error in service operation’s name

5 Output parameter type mismatch

6 Input parameter type mismatch

7 Error in name of input parameter

8 Mismatching of number of input

service parameters

9 Web service style mismatching

10 Suspension of web service during

transaction (getting into a loop)

Service

errors and

failures

11 System error during processing (like

“Divide by Zero”)

12 Calculation error during

processing(like, “Operand Type

Mismatch

13 Application error raising user

exception(defined by developer)

14 Network connection break-off Network

and

system

failures

15 Domain Name System (DNS) is down

16 Loss of packet with client request or

service response

17 Host unavailable (off-line)

18 Application Server is down

4. ERROR HANDLING
Unlike in monolithic applications, error handling becomes a

significant step in the design of SOA applications as SOA

applications integrate heterogeneous IT systems across the

organizational boundaries, vendor and partner IT assets.

Focusing on error handling analysis early in the analysis and

design phases ensures that appropriate error handling

standards/guidelines are put in place for modules in different

platforms. This topic identifies common error handling

considerations that architects and designers need to address

while going through the SOA solution design. SOA analysis

and design tasks are broadly classified into three major phases

i.e. Service Identification, Service Specification and Service

Realization as identified in Service Oriented Modeling and

Architecture by Ali Arsanjani.

4.1. Error Handling during Service Identification

The goal of service identification is to come up with a

candidate service portfolio that leads to identifying re-usable

service portfolio [4]. This phase involves analysis of business

artifacts package that includes key requirements, business

goals, capability models, Business Process Analysis Model

(BPAM), use cases, etc.

4.1.1 Types of errors

Errors are broadly classified into two types:

Recoverable Errors - Recoverable errors are the errors that

client programs can recover from to take appropriate alternate

execution paths. Such errors are the result of failure to meet a

particular business rule.

Non-Recoverable errors - These are the errors that client

programs cannot recover from. This kind of errors are result

of some unexpected errors during runtime such as

programming errors such null pointers, resources not available

etc.

4.1.2 Identification of Business Errors

Analyzing through the business artifact package provides

many opportunities to discover business errors associated with

services [4]. If there are existing asset(s) for a business

service, those component interfaces could be used to discover

additional business errors that are otherwise not identified in

top down analysis. Business errors are what referred to as

recoverable errors. Once the service portfolio is internal draft

stages, evaluate the re-usable services for the following error

handling considerations:

Business error scenarios: Detailed description of condition

that flags the business operation as invalid.

Error text: Provides a brief description of the business error

that service consumers will receive for a business error.

Error code: Code that can be looked up for additional info

about the error.

Suggestions: Feedback to the service consumer such as

examples of valid inputs, or displaying specific information

related to the error etc.

Service area: Identifies a service area that receives all

notifications related to service system errors.

These attributes that define the business errors could either go

into service contract or could be packaged into service

response as needed.

4.1.3 Process failure recovery scenarios

Identify new operations - Business process flows or any

micro flows are to be analyzed in the light of business errors

that individual services in a process flow could throw . Such

Register

Bind

Discover

Broker /

Registry

Consumer

/ Client

Service

Provider

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

an analysis could lead to discovering newer operations that

are otherwise not found in a typical top down process

decomposition tasks.

Updates to process models - Service operation

models/dependencies could be updated with the new

operations discovered in the previous step.

4.2 Error Handling during Service Specification

Service Specification phase consists of tasks defining inputs

and output messages, service and operation names, schemas,

service composition, non-functional requirements and other

service characteristics such as sync/async, invocation style,

etc. for the services that are marked as to be exposed [4].

4.2.1 Characteristics related to Error Handling

Common service characteristics that are related to error

handling are:

Assured Delivery - Determine if a service requires assured

delivery type of QOS. Such a requirement helps designers put

in appropriate asynchronous messaging design patterns or use

reliable messaging if implemented as web services.

Monitoring requirements - Determine if the service business

critical errors require being setup with proactive monitoring.

Error mapping/transformation rules - Establish

transformation rules for errors codes/info returned by the

service provider and how it needs to be provided to service

consumer. Having standard business error codes helps

applications consume these services easily in terms of

handling the service errors.

Updated process flows - Existing process flows are to be

updated with the newer operations or alternate execution paths

as discovered in the identification step to handle business

errors.

Transaction attributes and boundaries - Nature of errors

such as system Vs application errors influences how different

runtime platforms handle automatic roll backs. Transaction

attributes and boundaries in a process are to analyzed in the

light of errors that can be expected from individual service

invocations/transactions.

4.2.2 Common enterprise wide custom schemas

Identify metadata and common schemas to describe errors

consistently across the enterprise. This data could include

common attributes include date, time, error code, descriptions,

severity level, message source, correlation id, etc. Thorough

analysis of this metadata would turn out to be very useful for

setting effective service monitoring.

4.3 Error Handling during Service Realization

Service realization phase is where the service model is

mapped to service component and runtime /deployment model

[4]. This step typically involves designing service

components, allocating the components to SOA stack layers

choosing component interaction styles, runtime platforms

and making architectural design decisions (ADD). Subsequent

discussion of the subject will be focused around some best

practices to implement error handling considerations in the

three layers of typical enterprise SOA stack: business

processes or choreography, mediation/BUS and component

layers as highlighted in Figure 2.

Figure 2: SOA Enterprise Layer [12]

4.3.1 Error handling in the business process/orchestration

layer

Components deployed to this layer implementing business

process flows or choreographies. The following error handling

considerations apply here [4]:

Fault Handlers - Use of fault handlers is the most popular

way of handling service errors returned from the service

invocations initiated from within the orchestrations. Fault

handlers are attached to specific tasks in a process flow or as a

global fault handler for the entire process. When the process

results in errors, fault handlers are invoked to implement the

corrective tasks. Compensation transactions and manual

rollbacks are configured with the fault handlers so that

appropriate corrective actions could be applied to handle the

process errors. Care should be taken not to use Fault Handlers

for alternate execution paths instead should only be used to

recover from the errors thrown in the process.

Service status info - Choreography scenarios normally

involve call more than one service. These service invokes

from within the process could end up resulting in errors of

different severity that could range from info, warning, error

and fatal. It is a good practice to collect status description

from each invoke such as return codes etc. into a repeatable

array and return the same back to service consumer. Such a

practice gives the ability to the service consumer to determine

if the completion of the process involved any warnings/errors

from some of the services that process invoked.

Threshold error severity levels - Identify threshold error

severity levels and design fault tolerance levels in service

orchestration around these thresholds. Threshold levels could

be set on any attribute or a combination of these that define

the error, such as error severity levels, custom status codes

etc. as opposed to solely relying on SOAP faults for

determining process failures.

4.3.2 Error handling in the Services/Mediation/ESB layer

Enterprise Service Bus (ESB) layer is at the core of typical

enterprise SOA stack (figure 3). This layer supports the

transformation and routing capabilities required off of the

enterprise reusable services. Components in this layer provide

a well defined interface to the various provider

implementations such as existing underlying assets and

partner or vendor based services, by applying appropriate

message and protocol transformations. Error handling by the

mediation components mostly involves transforming the

provider error structures into well defined error structures

defined in the context of business domain. These components\

also could handle applying some complex transformation and

mapping rules on the errors returned from the back end

functional components to provide more simplified error info

to the service consumers within the enterprise.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3: Considerable errors in EBS layer [12]

Transform provider error codes - It is possible that

different service providers return service errors using different

semantics. The range could involve anywhere from popular

SOAP faults to very proprietary structures. Appropriate

transformation rules can be applied here so that re-usable

enterprise services return errors in a more consistent manner

that enterprise applications could easily parse and implement

appropriate handlers.

Filter sensitive information- when internal service

components throw fatal errors, the stack trace often contains

sensitive information such as protocols used, server ips, etc.

Appropriate filtering rules are to be established in this layer to

filter any sensitive information in the stack trace. This strategy

becomes all the more important when service responses are to

be given out over the trusted networks.

Trapping application errors - Any kind of technical errors

experienced by the service components such as resource

unavailability or some runtime exceptions etc. are to be

transformed into a simple technical error messages. If native

components did not log these errors, then mediation layers

could pass all the stack trace info into logging but only return

a generic text message back to the service consumer

informing about temporary service unavailability.

A lot of error handling considerations mentioned for this layer

is also possible to be implemented in the component layer.

But there are number of ESBs and frameworks in the market

that does these things in a lot more configurable and flexible

manner than what individual platform developers could

implement in their functional component implementations.

Separation of such error handling mediation concerns to ESB

layer relieves the platform developers from having to satisfy a

variety of error handling consideration and have them focus

more on implementing the business functionality resulting in

greater developer productivity.

Figure 4: Error handling technique in ESB layer [12]

4.3.3 Error flow steps

The following are the error handling steps in ESB layer

(figure3) [12].

Step 1: When a service requesting for another web service the

service request reach the request repository in the ESB layer.

Step 2: request repository sends the address of the web

service to the Repository provider.

Step 3: Before it reach the repository provider the request

repository sends the web address to the Rules to capture the

errors.

Step 4: If it finds any error then it sends the errors to error

repository.

Step 5: Error repository decides the error is in which type

then it sends to the types of error.

Step 6: Next the types of error send it to the transform rules to

avoid error, here it applied

some transformation then send it to the Repository provider.

Step 7: Finally the repository provider searches the address of

the web service and provide it to the service request.

4.3.4 Error handling in the component layer

Error handling by the components in this layer includes

handling abnormal execution conditions such non-availability

of a resource or some runtime conditions that the component

is not programmed to handle or is considered in violation of

logic [4]. Components are required to handle such events to

notify client programs and also do appropriate logging to help

facilitate troubleshooting and service monitoring. In Java

programming language, such events are thrown as exceptions

and the API provides two different types of exceptions:

checked and unchecked. Checked exceptions inherit from

Exception class and are used to handle recoverable errors such

as business error scenarios. Unchecked exceptions which are

descendents of Runtime Exception class are the ideal

candidate exceptions handle non-recoverable errors such as

resource nonavailability. The second part to component level

error handling is to do appropriate logging. It is a good

practice to perform logging closest to the source where the

error occurred. When components throw application errors,

they could log the exception at the appropriate interface

within the component boundaries and then throw the

exceptions. Use of correlation ids to identify the events and

passing the same to calling applications would greatly

enhance error tracking and monitoring by way of linking logs

across different platforms.

5. CONCLUSIONS

This paper provides SOA architects techniques to discover

error handling requirements from the business artifacts

package and how to analyze these while going through SOA

analysis and design phase. Also provides some best practices

to implement error handling in the three layers of SOA i.e.

orchestration, mediation and component layers. A thorough

upfront analysis of various error handling considerations help

architects make the right decisions during design and

implementation phases, platform and SOA stack products.

6. REFERENCES

[1] Chen Liu, Yanting Xu, D., and Xaiyu, L. “A rule-based

exception handlings approach in SOA”. International

Conference on Computer Application and System Modeling

(2010).

[2] Huang T, Wu GQ, W. J.” Runtime monitoring composite

web services through stateful aspect extension”. Journal of

computer science and technology (2009).

[3] Kareliotis Christos, Dr. Vassilakis Costas, D. G. P.

“Enhancing BPEL scenarios with dynamic relevance-based

exception handling”. IEEE (2007).

[4] Poolla, H.” Error handling considerations in SOA analysis

and design”. Enterprise Architecture (2010).

[5] Shukla, R. K. “Exception handling in service-oriented

architecture”. HCL Technologies (2006).

[6] Stefan Bruning, S. W., and Malek, M. “A Fault taxonomy

for service-oriented architecture”. IEEE (2007).

[7] Wen Jiajia, Chen Junliang, P. y. and Meng, X. "A

multipolicy exception handling system for BPEL process".

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

First International Conference on Communications and

Networking in China (06, 2007).

[8] L. Srinivasan and J. Treadwell. An overview of service-

oriented architecture, web services and grid computing. HP

Software Global Business Unit, 2, 2005.

[9] W3C, “Web services architecture,” Febuary 2004.

[Online]. Available: http://www.w3.org/TR/ws-arch/

[10] G. Denaro, M. Pezz´e, D. Tosi, and D. Schilling,

“Towards self-adaptive service-oriented architectures,” in

TAV-WEB ’06: Proceedings of the 2006 workshop on

Testing, analysis, and verification of web services and

applications. New York, NY, USA: ACM Press, 2006, pp.

10–16.

[11] Avizienis A., Laprie J.-C., Randell B., Landwehr C.

“Basic Concepts and Taxonomy of Dependable and Secure

Computing”, IEEE Trans. on Dependable and Secure

Computing. Vol.1, № 1. – P. 11-33, 2002.

[12] Prachet Bhuyan ,Tapas Kumar Choudhury and Durga

Prasad Mahapatra, “A Novel Approach For Exception

Handling In SOA”, David C. Wyld, et al. (Eds): CCSEA,

SEA, CLOUD, DKMP, CS & IT 05, pp. 425–433, 2012.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

