

 Survey on Frequent Pattern Mining over Data Streams

B. Subbulakshmi

Assistant Professor

Dr. C. Deisy

Associate Professor

A. Periya Nayaki

PG Student

Department of Computer Science and Engineering,

Thiagarajar College of Engineering,

Madurai, India.

Abstract

Frequent Pattern Mining plays an important

role in the field of data mining. It discovers an

interesting associated pattern from databases.

The concept of frequent pattern mining is

extended to dynamic database mining and the

data streams today. Data Stream is continuous,

unbounded sequence of data elements that

arrives at high speed from a specified source.

Some of the real time examples of data streams

are Web Click Streams, Sensor Networks, Stock

Market, Retail Chain Transactions and the like.

Unlike static database mining, there are lots of

challenges and various data processing models

are used for data stream mining. So, the study

of existing algorithms is needed to design the

efficient algorithms and data structure in the

concept of frequent pattern mining over data

streams is very important for the researchers.

Hence, in this paper we reviewed the concept of

data streams and overview of various

algorithms for the extraction of frequent

patterns based on data processing models

defined for data stream mining.

Keywords

Concept Drift, Landmark Window, Sliding

window, Damped Window

1. Introduction

 A data stream is a continuous, unbounded,

high speed, ordered sequence of items that

arrived in a timely order generating from a

specified source day by day. In data stream, the

data is generated at high speed; the mining

process on stream data is a very tedious task

compared to static data mining. In static data

mining, the size of the data is known prior to

the user. But, in dynamic data mining (Data

Streams) the size of data is not known to the

user. So, there are lots of challenges and models

are described to process the data streams.

Hence, Data Stream Mining is an emerging and

very challenging area in the data mining

community today.

 As the lot of algorithms has been

introduced for mining stream data, there is a

need to perform the association rule mining

(Frequent Pattern Mining) over data streams.

The main aim of this association rule mining is

to identify the items that occur frequently in the

database. There are two measures consider for

extracting the association rules. They are

support and confidence which reflects the

usefulness of association rules where support

(S) is the percentage of transactions that the

item (A) occur in the dataset and confidence (C)

is used to generate the rules over the data (e.g.,

A transaction which contains A and also

contains B).

 In Data Streams, Frequent Pattern Mining

is used to generate the reports on web log data,

estimating the frequency on internet packet

streams, stock tickers etc. The concept becomes

change in dynamic data mining over a period of

time as incoming data arrived.

 A window consists of the sequence of

transactions from the transaction data stream. A

window is either time based or count based. A

window is a time based if it consists of the

transactions with fixed time units. A window is

count based if it consists of collection of

batches where each batch contains set of

transactions with fixed count.

 Data Streams can be classified into two

categories namely Online Streams and Offline

Streams. In Offline Data Streams, the regular

bulk arrival of data has been collected and

stored in any backup devices or data warehouse

and processed in offline. For example, consider

2276

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

the web log data for generating reports after

collecting the web clicks from the log file and

process at any time in offline. In contrast to

offline data streams, the real time updated data

have been processed one by one in online data

streams. Our mining process over online data

streams is too fast as possible as the data arrival

rate in online data streams. For example,

predicting the frequency of internet packet

streams is considered as the real time data

because the packets are generated continuously

over the internet and process the one packet at a

time. The other online data stream applications

are sensor monitoring system, network traffic

analysis, intrusion detection system etc.

1.1 Challenges in Data Streams

 There are some fundamental challenges

[1] for extracting frequent patterns from data

streams. They are as follows:

1. In Data Streams, due to continuous, unbounded,

high speed, the data have been generated in all

organizations (both offline and online). Hence,

there is no enough time to rescan the entire data

for multiple times as do in static data mining.

2. The data stream mining algorithm needs to

handle the concept drifting problem.

Concept Drift: Since, the data streams are

time-varying in nature; the set of frequent

patterns change as time varies. In association

rule mining, when the new incoming data is

added from the data stream for processing (data

become changed over a time) some of the

frequent pattern becomes infrequent and vice-

versa. This is known as concept drift. The

following figure shows the example of concept

drift.

Figure1. Example of Concept Drift

In figure 1, Concept Drift is defined with an

example. I1 is frequent in initial mining process

becomes infrequent and infrequent item I2

becomes frequent after adding some

transactions for processing.

3. The data generating in online data streams are

very high; our mining algorithm is also very

fast as possible as the incoming data rate.

4. The analysis results of data stream mining keep

changing as well. Hence, it‟s an incremental

process (i.e., the highly updated data is to be

maintained at all time).

5. Due to high data arrival rate and limited system

resources, the mining algorithm supports these

resource adaptations.

1.2 Types of Algorithm

 Based on the results obtained from

mining, there exist two algorithms namely exact

algorithm and approximate algorithm in

association rule mining. The exact algorithm is

that the complete set of frequent patterns is

extracted without an error bound. All items

which are greater than the minimum threshold

value are collected. Moreover to know the exact

results, it needs an additional cost of processing.

Due to unbounded, high speed characteristics of

data in the data stream, some of the algorithm

maintains the short itemsets (closed or

maximal). The approximate algorithm

maintains the approximate set of frequent

patterns with some error bound. It can consider

two approaches for approximate mining: They

are either false-positive or false-negative. The

false positive approach contains some of the

infrequent patterns in addition to set of frequent

patterns in the result. The false negative

approach includes infrequent patterns but some

frequent patterns are also missing in the

resultant part.

1.3 Data Processing Models

 There are three types of data stream

processing models [1] namely, Landmark

Model, Damped Model or Time Fading Model,

Sliding Window Model.

 Landmark Model processes the entire

history of stream data over the some specific

point in the past and in the present. In this

2277

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

model, summary data is to be maintained in the

data structure.

 Sliding Window Model maintains and

processes the part of the stream data in the

current window. The result from sliding

window model reflects the recent frequent

itemsets. The old transactions are deleted when

the new transactions arrived into the current

window for processing due to unbounded, high

speed characteristic of data in nature. The size

of the window depends on the application and

the system resources.

 Damped Window Model processes the

stream data based on the weight assigned to

each transaction. Here, the older transactions

are assigned by less weight towards the itemset

frequencies and higher weight for recent data.

Damped Window Model is also one of the types

of sliding window model. In this model, the

decay rate is used to reduce the effect of old

transactions from the window. This model

brings the recent frequent itemsets in the mining

result.

 Based upon the application and user

needs, the model has been chosen for mining

process.

2. Analysis-Frequent Pattern Mining

Over Data Streams

2.1 Lossy Counting Algorithm

 Manku and Motwani [5] proposed a paper

“Approximate Frequency Counts over Data

Streams” in 2002. In this paper, the author

proposed a Lossy Counting algorithm for

frequency counts over the singleton items.

Initially, the stream of transactions is to be

filled in main memory as many numbers as

possible. Then, the stream data is divided into a

sequence of buckets and bucket id is assigned

for each bucket. The current bucket is denoted

as bc and α be the number of buckets processed

in the current batch. The inputs for this

algorithm are support and error rate. By using

these values, the approximate frequent patterns

are collected over the entire history of the data

stream.

 There are three modules has been

implemented in this paper. They are Buffer,

Trie and setGen. In Buffer module, the input

stream of transactions is filled with memory

repeatedly for processing. Transactions in each

bucket are represented by the item - id. Here, a

bitmap is used to represent the transaction

boundaries. A bit per item id indicates that the

last member of the transaction. In Trie module,

the compact prefix tree D is to be constructed

with pre order traversal in lexicographic order is

maintained. Each node is labelled as <item-id,

Freq, Δ, level> where item-id is the element id

in the transaction, Freq is the frequency count

of that item in the current batch, Δ is the

maximal allowable error, level of the node from

the root. The root node is always labelled as 0.

The level of any other node is one more than

that of its parent. The prefix tree D is updated as

follows:

 Updation: If (set, Freq, Δ) € D, then update

prefix tree D by increase the frequency count of

item in that particular node. The deletion

happens if the entry (Freq+Δ) ≤ bc.

 Creation: If set ≥ α and also present in the

current batch, but does not present in D. Then

create a new entry as (set, Freq, bc− α).

In setGen module, the subsets of

itemsets are generated from the item ids in

singleton items. This module is activated if

either the set is in Trie or the item which

exceeds α in the current batch. If any subset

does not satisfy a threshold value to make entry

into the tree data structure after updating and

creation, then the superset is also deleted from

the prefix tree.

 There are no false negatives and all

frequent itemsets are outputted using this

algorithm. But, setting up of error bound value

should be a tedious work. Because, if this value

is small, then the lot of approximate sub

frequent itemsets is generated. Hence, it takes

more memory space and more CPU processing

power.

2.2 DSM-FI Algorithm

 Li and Lee et. al [6] proposed a paper “An

Efficient Algorithm for mining frequent

itemsets over the entire history of data streams”

in 2004. In this paper, the author proposed the

prefix tree based; in-memory data structure

called ISFI (Item Suffix Frequent Itemsets)

forest based on DSM-FI algorithm. It generates

an approximate amount of frequent itemsets

over the entire history of data streams.

An ISFI-Forest consists of two

components such as HT (Header Table) and

SFI-Trees (Sub Frequent Itemsets). The batch

of transactions is processed together. For each

item in the transaction, the corresponding SFI-

tree is generated. Each unique item X, the sub

2278

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

frequent itemsets prefixed by Y, the DSM-FI

inserts an entry into the HT(Y) or if X is

already in HT(Y), it just increments the Freq

(X). ISFI tree consists of four fields: item-id,

Freq, batch-id, link where item-id represents the

identifier of that item in a transaction, Freq

represents the frequency count of that item,

batch-id represents the id of the processing

batch and link represents the link points to the

first head node of X in the SFI-tree.

Let us consider an incoming batch of

transaction, y1, y2, y3....., yk-1, yk . The item suffix

tree is generated for (y1, y2, y3....., yk-1, yk) , (y2,

y3....., yk-1, yk), (y3....., yk-1, yk) , (yk-1, yk) , (yk) .

DSM-FI periodically prunes the itemsets which

are less than threshold value S. This pruning

happens reconnection of the nodes in the SFI-

tree.

Figure 2 shows an example of

constructing a sample ISFI- forest for

transaction containing an item {FGH}. It

consists of HT‟s and SFI-trees for each unique

item F, G, H.

Figure2. Sample ISFI-Forest Construction

A SFI-tree is a more compact data

structure comparable to prefix tree. For

example, (y1, y2, y3) is an FCI (Frequent Closed

Itemset), it represented by two paths in a prefix

tree (y1, y2, y3) and (y1, y3). But in the SFI - tree

it is represented by a single path (y1, y2, y3).

Moreover, higher computational cost is to be

needed for maintaining the compactness of the

SFI-tree. Since, more tree traversals are

required to collect the frequency information of

the itemsets.

2.3 FP-Stream Algorithm

Chris Gianella and Han et. al [4]

proposed a paper “Mining Frequent Patterns in

Data Streams at Multiple Time Granularities” in

2004. In this paper, the authors have

implemented the algorithm called FP-Stream to

extract the complete set of frequent patterns

with an approximate error bound. This

algorithm used the tilted time window model to

extract the frequent itemsets. This model uses

the finer granularity to mine the recent data and

coarser granularity to mine the long term or

historical data. To guarantee the completeness

of frequent patterns, the infrequent patterns are

not deleted after processing the batch of

transactions. Because, those infrequent patterns

will become frequent again in future. In

addition to that in realistic, due to the limited

size of memory, we can't store the entire

streaming data. Hence, FP-Stream divides the

data into three categories: Frequent, Sub-

Frequent and Infrequent. The user has to

specify the σ (minimum support) and the error

support €. The itemsets which are greater than σ

are considered as the frequent patterns. The

itemsets which is less than σ but greater than €

are considered as the sub-frequent set because

they become frequent later. The infrequent

patterns which are less than € are pruned.

Because, this will not affect that much of

calculating support. This algorithm maintains

the paired sections: Pattern Tree, Tilted time

window table of each frequent item in the node.

To reduce the records from the window (i.e.,

pruning the itemset X), Freq(X) be the

computed frequency over the time Ti and Ni be

the number of transactions that occur in Ti

where 1 ≤ i ≤ τ.

Finds a point n before that point, choose a

transaction Tk between T1 and Tn and sum of

total computed frequency over T1 and Tk is

always less than the relaxed minimum support €

for some k transactions, and prune those

frequency records by considering unpromising

(freq1(X).....freqk(X)).

For eg:

Figure3. FP-Stream structure

Figure 3 shows an example for structure of FP-

Stream. The tilted time window model is mostly

given the importance on recent data than the old

2279

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

data as the sliding window does. But it does not

delete the historical data completely. As time

varies, the FP-Stream structure becomes very

large. Moreover, updating and scanning over

this large structure degrades the mining

throughput.

2.4 Compact Pattern Stream Tree

Algorithm

Tanbeer and Chowdry et al [11]

proposed a paper “Sliding Window based

frequent pattern mining over data streams” in

2009. In this paper, the authors proposed the

compact prefix tree based structure called CPS-

tree to store the exact and complete recent

frequent patterns. There are two phases in this

algorithm. They are Insertion Phase and

Restructuring Phase. In Insertion Phase, the

items are inserted into each node in the CPS-

tree by a predefined item order. The item has to

be maintained as order in the list called I-List.

In Restructuring Phase, the I-List was sorted in

frequency-descending order and the CPS - tree

was also restructured based on the I-List. These

two phases are repeatedly executed several

number of times while processing the pane of

transactions. Thus, the tree construction was

started with the insertion phase and ends with

restructuring phase. The restructuring phase

follows the Branch Sorting method and the path

adjusting method.

 In the CPS - tree, there are two types of

nodes which has to be maintained: Ordinary

node and tail node. The former one maintains

only support count in addition to the item in the

node I (σ) where I is the item in that node and σ

is the support count for that item in the current

window. The latter one maintains I (σ; {p1, p2,....,

pn}) indicates that item present in last node ,

total support count in the current window and

item present in which pane (pane counter) in the

current sliding window, p1 represents the oldest

pane, pn represents the latest pane. For example,

{a, b, c} are the items present in the particular

transaction in the second pane among 4 panes in

the current sliding window. Here c is the tail

node and it is represented as {0, 1, 0, 0}.

 In contrast to DSTree (Each node

represents the pane information along with their

support count. It takes more memory space),

here the pane information only maintains in the

tail node. So, it saves a lot of memory space. In

this tree construction phase, there is a small

overhead of tree restructuring cost.

2.5 Weighted Sliding Window Algorithm

Pauray S.M.Tsai [10] proposed a paper

“Mining Frequent Itemsets in data streams

using the weighted sliding window model” in

2009. In this paper, the author proposed WSW

algorithm to discover all frequent patterns over

the data streams. Here, the user wants to specify

the number of windows, size of the window,

minimum support count and weight for each

window. The size of the window is specified by

time, not by transactions and the user has to be

given different weights to different windows

based on the importance of the data in the

particular section. For example, the data in the

current point are more important than the older

ones. Hence, the highest weight has to be

assigned for recent data.

For example,

 Assume that the current time point for

mining process is T1 and the number of

windows = 3. The weight αj where ∑
3
j=1

assigned for each window. α1 = 0.5, α2= 0.4,

α3= 0.2 and minimum support is 0.2. The

support count of item F in W1a, W1b, W1c are 10,

20,30 respectively. The support count of item G

in W1a, W1b, W1c are 50, 60, 70. The number of

transactions in each window is 300, 200, 200

and minimum support for each window is 60,

40, 40.

Weighted Support count (F):

 = (10*0.5) + (20*0.4) + (30*0.2)

 = 19

Weighted Support count (G):

 = (50*0.5) + (60*0.4) + (70*0.2)

 = 63

The minimum weighted support threshold is

calculated by summation of weight of each

window and minimum support. In this

example, the minimum weighted support count

= (60*0.5) + (40*0.4) + (40*0.2) = 54.

 The total support count (10+20+30) for item „F‟

is 60. But, the weighted support count for this

item is 19 which is less than the actual weighted

support (54) value. Hence, it is not considered

as the frequent pattern.

 The support count (50+60+70) for item „G‟ is

180. But, the weighted support count for this

item is 63 which are greater than the actual

weighted support (54) value. Hence, it is

considered as the frequent pattern in the current

sliding window.

2280

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

From this example, we infer that the frequent

patterns depend on the weight assigned for each

window. Even though, the support count of an

item is high, the weighted support count is low.

Hence, the setting of the weight for each

window of the user is reasonable and

significant.

2.6 Weighted Support Frequnt Itemsets

Algorithm

 Younghee Kim and Wonyoung et. al [12]

proposed a paper “Mining Frequent Itemsets

with Normalized Weight in Continuous Data

Streams” in 2010. In this paper, the author

proposed the algorithm called Weighted

Support Frequent Itemsets (WSFI) to maintain

the important frequent itemsets based on the

weight assigned to each item. Moreover, the

frequent items are maintained in a tree structure

called a WSFP - tree (Weighted Support

Frequent Pattern-tree) that stores the

compressed form of crucial information about

the frequent itemsets. Weighted support is

assigned to each item. The weighted support is

normalized within the range of

). The

weighted support of an itemset Y can be

calculated by . The

normalized minimum weighted support was

calculated by

 and

the normalized maximum weighted support was

calculated by

.

The important patterns are discovered using this

weighted support count. The frequent itemsets

are no less than this normalized weighted

support. During processing, the itemsets are

divided into three categories: Frequent items,

Latent items and infrequent items. There are

two factors considered: α and € where the

itemsets which are greater than α are considered

as the frequent itemsets and the itemsets which

are less than they € are considered as the

infrequent itemsets and its pruned. Because it

does not affect that much of calculated support,

the itemsets which are all maintain in-between α

and € are considered as the latent items. These

latent items will become either frequent or

infrequent in the future.

α (Minimum weighted support threshold) is

calculated by.,

€ (Minimum weighted support error threshold)

is calculated by. ,

 If , WS(Y) ˂ €

(Infrequent), where

€ is the minimum weight support error

threshold is within the range of [0,α]. Here, the

setting up of weight range is very much

important in this process.

2.7 Variable Size Sliding Window

Algorithm

Mahmood Deypir et. al [8] proposed a

paper “Towards a Variable size Sliding

Window Model for frequent itemset mining

over data streams” in 2012. In this paper, the

author proposed a new algorithm VSW to

extract the recent frequent itemsets over the

data streams using dynamic window size. The

optimal window size was determined

automatically based on the amount of changes

occurred in the set of frequent patterns. For this

purpose, the user wants to give the minimum

change threshold. This value determined how

much the user interested in recent changes in

the frequent patterns. In this algorithm, there are

two phases: Window Initialization Phase and

Window Sliding Phase. In former one, initial

window size is specified by the user. The

transactions are filled in that window and

frequent itemsets are mined and stored in the

prefix tree. The frequent patterns were mined

using the ECLAT algorithm [2]. After

completing the process of initial window, some

set of transactions is inserted into a sliding

window (Pane: Batch of transaction). After

extracting the frequent itemsets from the pane,

the prefix tree is updated. At that time, the

Window Sliding Phase was activated to reduce

the window size by delete old transactions from

the window. The checkpoint is specified at the

end of Initial window to diagnose the changes

occurred in the set of frequent patterns. Due to

pane insertion, some amount of frequent

patterns becomes infrequent and vice versa

(Concept change or Concept Drift). After

detecting that concept change, if this value is

greater than the user defined minimum change

threshold value, then the transactions that lie

before the checkpoint and the essence stored in

the prefix tree was also deleted and checkpoint

has updated to the point where the concept

change was detected. Due to efficiency issues,

the concept change was detected after every

pane insertion. The conceptchange was

calculated by using the formula,

2281

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

FChange =

Where, are newly emerged frequent patterns

 are newly disappeared frequent

patterns

For example,

FT={A,B,C,D,AB,AC,AD,AE,BC,BD,BE,CD,ABC,ABD}

FT‟={B,C,D,E,BC,BD,BE,CD,CE,DE,BCD,BCE,BDE,CDE

}

FChange = (7+7) / (14+7) = 0.67

From this example, we infer that the window

shrinks if this Fchange value is greater than the

user defined change threshold value. Otherwise,

the window expands and the mining process

continues.

Table 1. Comparative Analysis of Algorithms

Name of

the

Algorithm

Window

Model

Algorithm

Type

Updation

Rate

Merits Limitations

Lossy

Counting

Landmark Approximate Batch Wise No False Negatives

in results.

Setting up of relaxed

minimum support

threshold leads to

dilemma.

DSM-FI Landmark Approximate Batch Wise Compact tree

structure has been

designed to store the

frequent patterns.

It needs more tree

traversals for the

frequency count.

CPS Sliding

Window

Exact Batch Wise It maintains the

frequency count lists

at the last node

which can reduces

the size of the prefix

tree.

Additional

computational cost

needed for restructuring

the tree after every pane

insertion.

FP-Stream Tilted time

window

Approximate Batch Wise It extracts Complete

set of frequent

patterns using time

sensitive data

streams.

FP-Stream tree becomes

very large over a time.

WSW Sliding

Window

Exact Batch Wise A single pass

algorithm was

developed to

discover the frequent

itemsets.

Weights of each

window affected the

mining results. So, user

should specify the

reasonable weight for

each window.

WSFP Sliding

Window

Exact Transaction

Wise

It collects the

important recent

frequent patterns

with limited memory

space.

Initial setting of

normalized minimum

and maximum weight is

given as random.

VSW Sliding

Window

Exact Batch Wise Obselete

Transactions are

deleted with respect

to Fchange value.

The prefix tree becomes

very large where there

is no changes occurred

in the frequent patterns

in processing.

2282

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

Conclusion

In this paper, we have reviewed a lot of

old and recent algorithms for frequent patterns

mining over data streams based on various window

models. In addition to that, we have discussed the

types of algorithms to give ideas for researchers to

develop the exact or approximate algorithms.

Moreover, the comparative table also shows that an

overview of various stream mining algorithms with

merits and limitations. In future, we will develop a

new algorithms and techniques to overcome the

shortcomings of existing algorithms.

References

[1] Agarwal R, Srikant R, “Fast algorithms for

mining association rules in large databases”, In:

Bocca J, Jarke M, Zaniolo C (eds) Proceedings

of the 20
th

 international conference on very

large databases, Santiago de Chile, Chile,

September 1994, pp. 487-499.

[2] Bart Goethals, “Frequent Set Mining”, Data

Mining and Knowledge Discovery Handbook,

pp. 377-397.

[3] Chang-Hung Lee, Cheng-Ru Lin, Ming-Syan

Chen, “Sliding-Window Filtering: An Efficient

Algorithm for Incremental Mining”, In:

Proceeding of the 2001 ACM CIKM

international conference on information and

knowledge management, Atlanda, Georgia,

USA, November 2001, pp. 263-270.

[4] Chris Gianella, Jiawei Han, Jian Pei, Xifeng

Yan, Philip S. Yu, “Mining Frequent Patterns in

Data Streams at Multiple Time Granularities”,

In: Kargupta H, Joshi A, Sivakumar D, Yesha Y

(eds) Data Mining: next generation challenges

and future directions, MIT/AAAI Press, pp.

191-212.

[5] Gurmeet Singh Manku and Rajeev Motwani,

“Approximate Frequency Counts over Data

Streams”, In: Proceedings of the 28
th

international conference on very large

databases, Hong Kong, August 2002, pp. 346-

357.

[6] Hua-Fu Li, Suh-Yin Lee, Man-Kwan Shan, “An

efficient algorithm for mining frequent itemsets

over the entire history of data streams”, In:

Proceedings of the first international workshop

on knowledge discovery in data streams, in

conjunction with the 15
th

 European conference

on machine learning ECML and the 8
th

European conference on the principals and

practice of knowledge discovery in databases

PKDD, Pisa, Italy, 2004.

[7] James Cheng, Yiping Ke, Wilfred Ng, “A

survey on algorithms for mining frequent

itemsets over data streams”, Springer,

Knowledge Information Systems, May 2007,

[8] Mohmood Deypir, Mohammad Hadi

Sadreddini, Sattar Hashemi, “Towards a

variable size sliding window model for frequent

itemset mining over data streams”, Computers

& Industrial Engineering, Vol. 63, February

2012, pp. 161-172.

[9] Nan Jiang and Le Gruenwald, “Research Issues

in Data Stream Association Rule Mining”,

ACM SIGMOD Record, Vol. 35, No.1, March

2006, pp. 14-19.

[10] Pauray S.M. Tsai, “Mining frequent

itemsets in data streams using the weighted

sliding window model”, Elsevier, Expert

Systems with Applications, Vol. 36, March

2009, pp. 11617-11625.

[11] Syed Khairuzzaman Tanbeer, Chowdhury

Farhan Ahmed, Byeong-Soo Jeong, Young-Koo

Lee, “Sliding Window-based frequent pattern

mining over data streams”, Elsevier,

Information Sciences, Vol. 179, July 2009, pp.

3843-3865.

[12] Younghee Kim, Wonyoung Kim, Ungmo

Kim, “Mining Frequent Itemsets with

Normalized Weight in Continuous Data

Streams”, Journal of Information Processing

Systems, Vol. 6, No.1, March 2010, pp. 79-

89.

2283

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120950

