
Survey on Join Algorithms and Task Scheduling

Algorithms for Hadoop MapReduce Platform

Amol R. Rayamane,

M Tech (CSE), KLSGIT,

Belagavi, India.

 Prabhuling S. Biradar
M Tech (CSE), KLSGIT,

Belagavi, India.

 Bhavana A. Kurade,
M Tech (CSE), KLSGIT,

Belagavi, India.

Abstract— Today’s Digital era causes a rapid increase of

datasets. These datasets are termed as “Big Data” due to its

massive amount of volume, variety and velocity and is stored in

distributed file system architecture. There are the following

techniques that are used to analyze massive amounts of data:

MapReduce paradigm, parallel DBMSs, column-wise store, and

various combinations. We focus on a MapReduce environment.

Hadoop is framework that supports Hadoop Distributed File

System (HDFS)for storing and MapReduce for processing of

large data sets in a distributed computing environment. Task

assignment is possible by schedulers. In this paper we compare

join algorithms as well as task scheduling algorithms for

Hadoop platform.

I. INTRODUCTION

Data-intensive applications include large-scale data

warehouse systems, cloud computing, data-intensive

analysis. Applications for large-scale data analysis use such

techniques as parallel DBMS, MapReduce (MR) paradigm,

and columnar storage. Applications of this type process

multiple data sets. This implies need to perform several join

operation. It’s known join operation is one of the most

expensive operations in terms both I/O and CPU costs.

Unfortunately, join algorithms is not directly supported in

MapReduc[18]. There are some approaches to solve this

problem by using a high-level language PigLatin, HiveQL

for SQL queries or implementing algorithms from research

papers. Millions of users are using applications based on

Internet services work with sheer volume of data has lead to

parallel computing on clusters. Processing and storing giant

amount of data in parallel manner become a challenge to

computing globe. Hadoop[16] is a open source Java based

framework which can run applications in the cluster that

consist of reasonably priced hardware, for processing and

storing large amount of data in distributed computing

environment. Hadoop uses HDFS (Hadoop Distributed File

System) for storing data and to process these data it uses

MapReduce Programming model introduced by Google. One

of the fascinating matter is their task scheduling. There are

three important scheduling issues in MapReduce such as

locality, synchronization and fairness[17].

II. JOIN ALGORITHMS

In this section we consider various techniques of two-way

joins in MapReduce framework. Join algorithms can be

divided into two groups: Reduce-side join and Map-side join.

A. Reduce-Side Join

Reduce-side join is an algorithm which performs data pre-

processing in Map phase, and direct join is done during the

Reduce phase. Join of this type is the most general without

any restriction on the data. Reduce-side join is the most time-

consuming, because it contains an additional phase and

transmits data over the network from one phase to another. In

addition, the algorithm has to pass information about source

of data through the network. The main objective of the

improvement is to reduce the data transmission over the

network from the Map task to the Reduce task by filtering the

original data through semi-joins. Another disadvantage of

this class of algorithms is the sensitivity to the data skew,

which can be addressed by replacing the default hash

partitioner with a range partitioner.

There are three algorithms in this group:

 General Reducer-Side Join,

 Optimized Reducer-Side Join,

 The Hybrid Hadoop join.

1) General Reducer-Side Join is the simplest one. The same

algorithms are called Standard Repartition Join in [2]. This

algorithm has both Map and Reduce phases. In the Map

phase, data are read from two sources and tags are attached to

the value to identify the source of a key/value pair. As the

key is not effecting by this tagging, so we can use the

standard hash partitioner. In Reduce phase, data with the

same key and different tags are joined with nested-loop

algorithm. The problems of this approach are that the reducer

should have sufficient memory for all records with a same

key; and the algorithm sensitivity to the data skew.

2) Optimized Reducer-Side Join enhances previous algorithm

by overriding sorting and grouping by the key, as well as

tagging data source. Also known as Improved Repartition

Join in [2], Default join in [4]. In the algorithm all the values

of the first tag are followed by the values of the second one.

In contrast with the General reducer-side join, the tag is

attached to both a key and a value. Due to the fact that the tag

is attached to a key, the partitioner must be overridden in

order to split the nodes by the key only. This case requires

buffering for only one of input sets.

3) Hybrid Join combines the Map-side and Reduce-side

joins[1]. In Map phase, we process only one set and the

second set is partitioned in advance. The pre-partitioned set is

pulled out of blocks from a distributed system in the Reduce

phase, where it is joined with another data set that came from

the Map phase. The similarity with the Map-side join is the

restriction that one of the sets has to be split in advance with

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060282
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

639

the same partitioner, which will split the second set. Unlike

Map-side join, it is necessary to split in advance only one set.

The similarity with the Reduce-side join is that algorithm

requires two phases, one of them for preprocessing of data

and one for direct join. In contrast with the Reduce-side join

we do not need additional information about the source of

data, as they come to the Reducer at a time.

B. Map-Side join

Map-Side Join is an algorithm without Reduce phase. This

kind of join can be divided into two groups. First of them is

partition join, when data previously partitioned into the same

number of parts with the same partitioner. The relevant parts

will be joined during the Map phase. This map-side join is

sensitive to the data skew. The second is in memory join,

when the smaller dataset send whole to all mappers and

bigger dataset is partitioned over the mappers. The problem

with this type of join occurs when the smaller of the sets

cannot fit in memory.

There are three methods to avoid this problem:

 JDBM-Based Map Join,

 Multi-Phase Map Join,

 Reversed Map Join.

Map-side partition join algorithm assumes that the two sets

of data pre-partitioned into the same number of splits by the

same partitioner. Also known as default maps join. At the

Map phase one of the sets is read and loaded into the hash

table, then two sets are joined by the hash table. This

algorithm buffers all records with the same keys in memory,

as is the case with skew data may fail due to lack of enough

memory.

1) Map-Side Partition Merge Join (MSPMJ) is an

improvement of the previous version of the join.If data sets in

addition to their partition are sorted by the same ordering, we

apply merge join. The advantage of this approach is that the

reading of the second set is on-demand, but not completely,

thus memory overflow can be avoided. As in the previous

cases, for optimization can be used the semi-join filtering and

range partitioner.

2) In-Memory Join (IMMJ) does not require to distribute

original data in advance unlike the versions of map joins

discussed above. The same algorithms are called Map-side

replication join in [3], Broadcast Join in [2], Memory-backed

joins [1], Fragment- Replicate join in [4]. The IMMJ

algorithm has a strong restriction on the size of one of the

sets: it must fit completely in memory. The advantage of this

approach is its resistance to the data skew because it

sequentially reads the same number of tuples at each node.

 There are two options for transferring the smaller of the

sets:

 Using a distributed cache,

 Reading from a distributed file system.

3) JDBM-Based Map Join is presented in [5]. In this case,

JDBM library automatically swaps hash table from memory

to disk.

4) Multi-Phase Map Join [5] is algorithm where the smaller

of the sets is partitioned into parts that fit into memory, and

for each part runs In-Memory join. The problem be put in the

memory is increased twice, the execution time of this join is

also doubled. It is important to note that the set, which will

not be loaded into memory, will be read many times from the

disk.

5) Idea of Reversed Map Join [5] approach is that the bigger

of the sets, which is partitions during the Map phase, loading

in the hash table. Also known as Broadcast Join in [2].The

second dataset is read from a file line by line and joined using

a hash table.

C. Semi-Join

Sometimes a large portion of the data set does not take part in

the join. Deleting of tuples that will not be used in join

significantly reduces the amount of data transferred over the

network and the size of the dataset for the join. This

preprocessing can be carried out using semi-joins by

selection or by a bitwise filter.

There are three ways to implement the SEMI-JOIN

operation:

 Semi-Join Using Bloom-Filter,

 Semi-Join Using Selection,

 An Adaptive Semi-Join.

1) Bloom-Filter is a bit array that defines a membership of

element in the set. False positive answers are possible, but

there are no false-negative responses in the solution of the

containment problem. The accuracy of the containment

problem solution depends on the size of the bitmap and on

the number of elements in the set. These parameters are set

by the user. It is known that for a bitmap of fixed size m and

for the data set of n tuples, the optimal number of hash

functions is k=0.6931*m/n. In the context of MapReduce, the

semi-join is performed in two jobs. The first job consists of

the Map phase, in which keys from one set are selected and

added to the Bloom-filter. The Reduce phase combines

several Bloom filters from first phase into one. The second

job consists only of the Map phase, which filters the second

data set with a Bloom-filter constructed in previous job. The

accuracy of this approach can be improved by increasing the

size of the bitmap. The advantage of this method is its the

compactness. The performance of the semi-join using

Bloom-filter highly depends on the balance between the

Bloom-filter size, which increases the time needed for its

reconstruction of the filter in the second job, and the number

of false positive responses in the containment solution.

2) Semi-Join With Selection extracts unique keys and

constructs a hash table. The second set is filtered by the hash

table constructed in the previous step. In the context of Map

Reduce, the semi-join is performed in two jobs. Unique keys

are selected during the Map phase of the first job and then

they are combined into one file during the Map phase. The

second job consists of only the Map phase, which filters out

the second set. The semi-join using selection has some

limitations. Hash table in memory, based on records of

unique keys, can be very large, and depends on the key size

and the number of different keys.

3) Adaptive Semi Join is performed in one job, but filters the

original data on the flight during the join. Similar to the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060282
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

640

Reduce-side join at the Map phase the keys from two data

sets are read and values are set equal to tags which identify

the source of the keys. At the Reduce phase keys with

different tags are selected. The disadvantage of this approach

is that additional information about the source of data is

transmitted over the network.

D. Comparative Analysis of Join Algorithms

The features of join algorithms are presented in the Table

1. The approaches with pre-processing is good when data is

prepared in advance for example come from another

MapReduce job. Algorithms with one phase and without

tagging is more preferable due to the fact that no additional

transferring data through the network are needed. Approaches

that sensitive to the data skew may be improved by

optimizations with range partitioner. In case of data low

selectivity semi-join algorithms can improve performance

and reduce the possibility of memory overflow.

III. TASK SCHEDULING ALGORITHMS

In this section, we will discuss several task scheduling

algorithms such as FIFO, Fairshare, Capacity, Delay and

IWRR .

A. FIFO Scheduling Algorithm

This is a default scheduler used by Hadoop which operates

using a queue. In this approach job is first partitioned into

individual tasks, and afterward loaded into the queue and

assigned to free slots on Task Tracker (slave). Each job

would exploit the complete cluster, as a result jobs be obliged

to wait for their turn. The major disadvantage of this

algorithm is that once the previous job with the scheduler, the

major drawback is that only after finishing the previous job,

subsequently jobs in the job queue will be assigned. The

scheduler implementation is straightforward and

proficient[8].

B. Fair Share Scheduling Algorithm

The Fair Scheduler was developed at Facebook to manage

access to their Hadoop cluster [9]. The Fair Scheduler gives

equivalent share of cluster capacity to each user. Users may

assign jobs to pool, with each pool allocated a definite

minimum number of Map and Reduce slots [10] [15].If there

are free slots in pools then they may be allocated to other

pools, while excess capacity within a pool is shared among

jobs. The Fair Scheduler is a preemptive that is to say if a

pool has not received its fair share for a certain period of

time, then the scheduler will destroy tasks in pools running

over capacity in order to give the slots to the pool running

underneath capacity. Seeing that jobs have their tasks

allocated to Task Tracker for computation, the scheduler

track the shortfall between the amount of time actually used

and the ideal fair allocation for that job. When slots become

free, the next task from the job with the highest time shortfall

is make sure that jobs receive approximately equivalent

amounts of resources. Shorter jobs are allocated sufficient

resources to finish quickly. Simultaneously, longer jobs are

assured to not be starved of resources.

TABLE 1. THE FEATURES OF JOIN ALGORITHM

Algorithm

Pre-Processing

Number

Of Phases

Tags

Sensitive To

Data Skew

Need

Distributed

Cache

Memory

Overflow

GRSJ

-

2

To Value

Yes

-

Number of tuples for the same key

is large

ORSJ

-

2

To Key

and Value

Yes

-

Number tuples for the same key is

big

HYB 1 Data 2 - Yes - Part size is large

MSPJ 2 Data 1 - Yes - Part size is large

MSPMJ 2 Data + Sort 1 - Yes - -

IMMJ - 1*Part - - Yes Size of smaller dataset is large

MUL 1 Data - - Yes -

JDBM - 1 - - Yes -

REV

-

1

-

-

Yes

Part size is big band number of
tuples for the same key is big

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060282
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

641

TABLE 2. COMPARATIVE ANALYSIS OF EXISTING SCHEDULING ALGORITHM

C. Capacity Scheduling Algorithm

Capacity Scheduling algorithm was developed to manage fair

distribution of resources among huge mass of users. The

Capacity Scheduler allocates jobs based on the submitting

user to queues with configurable numbers of Map and

Reduce slots [11][14][15]. Queues which have jobs are given

their configured capacity where as free capacity in a queue is

shared between other queues. Scheduling is driven on a

customized priority queue basis with specific user restrictions

within a queue, with priorities adjusted based on the time a

job was submitted, and the priority setting allocated to that

user and category of job[14]. When a Task Tracker slot

becomes free, the queue with the lowest load is selected,

from which the oldest lasting job is nominated. A task is next

scheduled from that job.

 D. Delay Scheduling

Authors of [12] and [13] have discussed delay scheduling

algorithm. Fair scheduling algorithm was developed to

allocate fair share of capacity to all the users. The scheduler

launches a task from a job on a node. If task is run on the

node that contain the data, it is most efficient, but when it is

not possible, running on a node on the same rack is faster

than running off-rack. Delay scheduling is used to improve

data locality by asking jobs to wait for its turn for scheduling

on a node with local data. When a node requests a task and if

the head-of-line job cannot launch a local task then it is

skipped and looked at next jobs. But if a job has been

skipped for long enough then non-local tasks are allowed to

launch to prevent starvation. In this algorithm although the

first slot given to a job is not likely to have data for it, but

tasks come to an end very quickly that some other slot

contain data for it will free within a small amount of time.

E. Improved Weighted Round Robin Scheduling Algorithm

In [6] authors have proposed IWRR scheduling , based on

the analysis of WRR algorithm. Under the unweighted

conditions, tasks of each job are submitted to Task Tracker in

turn. Under the weighted conditions, multiple tasks of the

larger weight job will run in a round, and the job’s weight

will be changed along with the increase or decrease of jobs

number. At times, if the number of tasks of the smaller

weight job becomes more, while the number of the larger

Weight job is less, then the weight of the smaller weight job

will be increased correspondingly, so the number of tasks

which are assigned to Task Tracker will be relatively

increased, and the weight of the larger weight job will be

appropriately decreased, the number of tasks which are

assigned to Task Tracker will be relatively decreased.

However, the relationship between them remains the same in

order to achieve load balance. This algorithm used weight

update rules to reduce workload and to balance tasks’

allocation. The algorithm is easy to be implemented with low

cost and suitable for the Hadoop platform that uses the only

Job Tracker to schedule.

E. Comparative Analysis of Existing Scheduling

Algorithm

Mainly three scheduling issues be taken into consideration:

fairness, locality and synchronization. Fairness finiteness has

trade-offs between the locality and dependency between the

map and reduce phases. Locality is defined as the distance

between the input data node and task-assigned node.

Synchronization be the process of transmitting the

intermediate output of the map processes to the reduce

processes as input is also considered as a factor which affects

the performance [7] . Task Scheduling is an aspect that

directly affecting the overall performance of Hadoop

platform and utilization of system resources. There are

various algorithms to resolve this issue with different

techniques and approaches as we discussed previous. The

comparative analysis of Scheduling algorithms is given in

Table 2.

IV. CONCLUSIONS

The paper gives an overall idea about different massive

parallel processing join algorithms and task scheduling

algorithms for Hadoop Mapreduce. We analyzed features of

Join algorithms such as preprocessing, number of phases,

tags, sensitive to data skew , need distributed cache and

memory overflow. We analyzed properties of various task

schedulers based on working mode, response time,

performance, data locality and fairness provision, execution

style, resource utilization, load balancing.

REFERENCES
[1] Fariha Atta. Implementation and analysis of join algorithms to

handle skew for the Hadoop MapReduce framework. Master’s

thesis, MSc Informatics, School of Informatics, University of

Edinburgh, 2010.

Parameter

 FIFO

Scheduling

FairShare

Scheduling

Capacity

Scheduling

Delay

Scheduling

IWRR

Scheduling

Mode Non Preemptive Preemptive Non preemptive
When job fails

Preemptive Preemptive

Implementation Simple Less complex Complex Simple Simple

Resource

Utilization

 Low High High High High

Response Time Low for short jobs High High High High

Performance High for small

clusters

High for both

large and small

clusters

High for large

clusters

High for small

clusters

High for both

large and small

clusters

Execution Serial Parallel Parallel Parallel Parallel

Load

Balancing

No Yes Yes Yes Yes

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060282
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

642

[2] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao,

Eugene J. Shekita, and Yuanyuan Tian. A comparison of Join

algorithms for log processing in MapReduce. In Proceedings of

the 2010 international conference on Management of data,

SIGMOD ’10, pages 975–986, New York, NY, USA, 2010.

ACM.

[3] A Chatzistergiou. Designing a parallel query engine over

map/reduce. Master’s thesis, MSc Informatics, School of

Informatics, University of Edinburgh, 2010.

[4] Alan F Gates. Programming Pig. O’Reilly Media, 2011.

[5] Gang Luo and Liang Dong. Adaptive join plan generation in

hadoop. Technical report, Duke University, 2010.

[6] Jilan Chen,Dan Wang and Wenbing Zhao, “A Task Scheduling

Algorithm for Hadoop Platform”, Journal of computers, Vol.

8,Issue 4,pp 929-936,April 2010.

[7] Seyed Reza Pakize,” A Comprehensive View Of Hadoop Map

Reduce Scheduling Algorithms”, International Journal of

computer networks and communications security, Vol. 2, Issue

9, pp.308-317,September 2014.

[8] Jisha S Manjaly, Chinnu Edwin A,” A Relative Study on Task

Schedulers in Hadoop MapReduce”, International Journal of

Advanced Research in Computer Science and Software

Engineering”, Vol. 3, Issue 5, pp 744-747, May 2013.

[9] B. Thirmala Rao, N. V. Sridevei, V. Krishna Reddy,

LSS.Reddy, “Performance Issues of Heterogeneous Hadoop

Clusters in Cloud Computing”, Global Journal Computer

Science & Technology Vol. 11, Issue 8, pp.81-87,May 2011.

[10] DeWitt & Stonebraker, “MapReduce: A major step

backwards”, 2008 .

[11] Dean, J. and Ghemawat, S., “MapReduce: a flexible data

processing tool”, communication of ACM,Vol. 53,Issue

1,pp72-77, January 2010.

[12] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled

Elmeleegy, Scott Shenker, and Ion Stoica. “Delay scheduling:

a simple technique for achieving locality and fairness in cluster

scheduling”,5th European conference on Computer systems,

ACM, pages 265–278, 2010.

[13] Matei Zaharia, Hruba Bortha kur, Joydeep Sen Sarma, Khaled

Elmeleegy, Scott Shenker, Ion Stoica, “Job Scheduling for

Multi-User MapReduce Clusters”, Electrical Engineering and

Computer Sciences, University of California at Berkeley

,Technical Report No. UCB/EECS-2009-55,2009.

[14] B.Thirumala Rao, Dr. L.S.S.Reddy, ”Survey on Improved

Scheduling in Hadoop MapReduce in Cloud Environments”,

International Journal of Computer Applications (0975-8887)

,Vol. 34,Issue 9,pp 29-33, November 2011.

[15] Joel Wolf, Andrey Balmin, Deepak Rajan, Kirsten

Hildrum,Rohit Khandekar, Sujay Parekh,Kun-Lung Wu,Rares

Vernica “CIRCUMFLEX: A Scheduling Optimizer for

MapReduce Workloads With Shared Scans”, ACM SIGOPS

Operating Systems Review ,Vol. 46 Issue 1,pages 26-

32,January 2012.

[16] Apache Hadoop, ”Hadoop home page”,

http://hadoop.apache.org/

[17] Hiral M. Patel, “A Comparative Analysis of MapReduce

Scheduling Algorithms forHadoop”, International Journal of

Innovative and Emerging Research in Engineering Volume 2,

Issue 2, 2015.

[18] A. Pigul,”Comparative Study Parallel Join Algorithms for

MapReduce environment”, Saint Petersburg State University.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060282
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

643

