
Survey on NP-Hard Problems of Digital Signature 

Schemas  

 
Rashad Elhabob

1
                                  Abdalla Adel

1
         Ma'moun Omer 

1
_ 

       Computer science department 

     

     University of Khartoum                University of Khartoum                                                                                    

Khartoum ,Sudan                                    Khartoum ,Sudan                                      Khartoum,Sudan  

 

Dr. Hwida Elshoush
2

 

Computer Science Department  

Faculty of Mathematical Sciences  

University of Khartoum 

Khartoum, Sudan 

 

 

Abstract— A study for public-key digital signature schemes that 

based on different mathematical NP hard problems. That 

problems influence in performance and reliability of digital 

signature schemes. In this paper we make a survey on 

mathematical NP hard problems of digital signature schemes and   

present the powerful and practical of some schemes depending on 

its security level. 
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I. INTRODUCTION  

 Digital signature is a verification mechanism based 

on the public-key scheme, and it provides: 

a. Data integrity (the assurance that data has not been 

changed by an unauthorized party).  

b. Authentication (the assurance that the source of data 

is as claimed).  

c. Non-repudiation (the assurance that an entity cannot 

deny commitments).  

 Generally, every public-key digital signature 

schemes is based on a mathematical problem. This problem is 

known as NP (Non-deterministic polynomial) hard problem. 

The problem is considered to be an NP hard mathematical 

problem if the validity of a proposed solution can be checked 

only in polynomial time. 

 Basically, public-key digital signature schemes are 

successfully classified into many major types depending on 

the NP mathematical hard problem shown in (Fig1). These 

problems are the integer factorization problem (IFP), the 

discrete logarithm problem (DLP), the Elliptic Curve discrete 

logarithm problem (ECDLP), the chaotic maps hard problem 

In the present e-commerce and e-government era, digital 

signatures have become more and more important According 

to this what the suitable schema used and in what class that 

algorithm fall after this study [1][4][6][7]. 

 
Fig.1. major type’s public-key digital signature schemes depending on the NP 

mathematical hard problem [4] 
 
 

I. DIGITAL SIGNATURE BASED ON INTEGER 

FACTORIZATION 

The factoring  a positive integer n means finding positive 

integers u and v such that the product of u and v equals n, and 

such that both u and v are greater than 1. Such u and v are 

called factors (or divisors) of n, and n =u .vis called a 

factorization of n. Positive integers that can be factored are 

called composites. Positive integers greater than 1 that cannot 

be factored are called primes. For example, n = 15 can be 

factored as the product of the primes u = 3 and v = 5, and n = 

105 can be factored as the product of the prime u = 7 and the 

composite v = 15. A factorization of a composite number is 

not necessarily unique: n = 105 can also be factored as the 

product of the prime u = 5 and the composite v = 21. But the 

prime factorization of a number writing it as a  product of 

prime numbers is unique, up to the order of the factors: n = 3 . 

5. 7 is the prime factorization of n = 105, and n D=5 is the 

prime factorization of n = 5[8][9]. 
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A. Rsa Digital Signature Scheme 

In the RSA digital signature algorithm, the private key is used 

to sign the message. The signed message will be sent to the 

receiver with the sender’s electronic signature. To verify the 

contents of digitally signed data, the recipient generates a new 

verification key from the signed message that was received, by 

using his public key, and compares the verified value with the 

original message value. If the two values match, then the 

message is verified and authenticated [4]. 

 

B. The RSA Digital Signature Algorithms: 

1) Key generation algorithm (generated by receiver) 
a. Choose two prime numbers (p, q) randomly, secretly, and roughly 

of the same size. 

b. Compute the modulus n as follows: n = p q. 

c. Compute the Ф(n), as follows: Ф(n) = (p-1) (q-1). 

d. Choose the key e, such that 1 < e <Ф(n), and GCD (e, Ф(n)) = 1. 
e.  Compute the private key d, such as d = e-1mod Ф(n). 

f. Send the public (n, e). 

2) Signature and verification algorithms:  
g. Determine the message m to be signed such that 0 < m < n.  

h. Sign the message as follows: s = md mod n.  
i. Send the signature s with the message m to Bob (receiver).  

3) Verification (receiver): 
j. Obtain the keys (d, n).  

k.  Obtain s, m from Alice.  
l.  Compute u as follows: u = se mod n.  

m.  Verify the message m as follows: is m= u-1?. 

 
 

II. DIGITAL SIGNATURE BASED ON DISCRETE 

LOGARITHM 

The Discrete Logarithm Problem (DLP) has been the 

subject of interest among many mathematicians and 

cryptographers in recent times because of its computational 

difficulty. 

Definition: The Discrete Logarithm Problem states:  

Given a multiplicative group G and elements g , h ϵ G, find an 

integer n, if it exists, such that g
n
 = h ”. This number n is the 

discrete logarithm of h to the base g, written more concisely as 

n=logg(h). 

In 1976, Whitfield Diffie and Martin Hellman 

published a paper in which they proposed the Discrete 

Logarithm Problem as a good source of a “one-way” function 

[10]. That marked the inception of the Discrete Logarithm 

Problem in cryptography. For the purpose of this study, we 

may think of a “one-way” function as a function       f : X    Y 

for which given x ϵ X, it is easy to compute f(x), however, 

given y ϵ Y, it is difficult to compute a value x ϵ X such that 

f(x) = y, at least for most values of y [2]. In other words, from 

the standpoint of realistic computability, the function f is not 

invertible, without further information, and it is for this reason 

that such function is otherwise known as a “trapdoor” 

function. 

A. Digital Signature Algorithm (DSA): 

DSA is an alternative to the ElGamal signature 

scheme. Knowing that tow schemes based on same 

mathematical hard problem “Discrete logarithm problems 

(DL)”, but DSA more security because it’s bases on 

complexity of the discrete logarithm problem in the field of 

Zp, where p is a prime [3]. 

B. The DSA Algorithms:  

1) Key generation algorithm (generated by receiver)  
a. Choose a prime number (p), where 2L-1 <p < 2L for 

512 ≤ L ≤ 1024 and L a multiple of 64.  

b. Choose a prime numbers (q), where q divisor of (p – 1), 

and 2159 <q < 2160.  
c. Compute g as follows: g = (h(p-1)/q) mod p, where 

1<h<(p – 1), and g > 1.  

d. Choose a random integer x, with 0 <x <q.  
e. Compute y as follows: y = gxmod p.  

f. Send (p, q, g, and y)  

2) Signing and verifying algorithms  
g. Determine the message m to be signed such that: 0 < m 

< p.  

h. Choose a random integer k, with 0 < k < q.  
i. Compute r as follows r = (gk mod p) mod q.  

j. Compute s as follows: s = ((k-1) (SHA-1(m) + x r)) 

mod q.  

k. The signature is (r, s).  

l. Send the signature(r, s) and the message to the receiver. 

m. k-1 is a multiplicative inverse of k in Zq.  

3) Verifying (receiver)  
n. Obtain the keys (p, q, g, and y).  

o. w = s-1 mod q.  

p. u1 = ((SHA-1(m)) w) mod q.  
q. u2 = (r w) mod q.  

r. v = ((gu1 yu2) mod p) mod q.  
s. Verify the message m as follows: is v= r?. 

 

III. DIGITAL SIGNATURE BASED ON ELLIPTIC 

CURVE 

Elliptic Curve provides public-key primitives using 

much shorter key lengths for a given security level than other 

cryptosystems such as RSA, Digital Signature Algorithm 

(DSA), or Diffie-Hellman. This is a decisive advantage in the 

context of embedded devices where resources (power, 

memory, frequency, bandwidth, etc.) are generally limited. 

Thus, many applications are currently switching to ECC as 

security requirements increase over the years and traditional 

key lengths become prohibitive in the embedded context. 

Elliptic Curves are mathematical constructions, An 

elliptic curve can be defined over any field (of real , relational 

or complex numbers ) , but  generally speaking the elliptic 

curve used in cryptography are defined over finite 

fields[11]like what show  in figure 2. 

 

 
Fig2: finite fields represented in graph[3] 
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A. Finite Field 

A finite field consists of a finite set of elements together 

with two binary operations called addition and multiplication, 

which satisfy certain arithmetic properties. The order of a 

finite field is the number of elements in the field. There exists 

a finite field of order q if and only if q is a prime power. If q is 

a prime power, then there is essentially only one finite field of 

order q; this field is denoted by Fq. There are, however, many 

ways of representing the elements of Fq. Some representations 

may lead to more efficient implementations of the field 

arithmetic in hardware or in software. If q=pm where p is a 

prime and m is a positive integer, then p is called the 

characteristic of Fq and m is called the extension degree of Fq. 

1) Prime Field Fp: 

Let p be a prime number. The finite field Fp called a prime 

field, is comprised of the set of integers {0,1,2,….,p-1} 

with the following arithmetic operations: 

a) Addition: If a, b ε Fp then a+b=r, where r is the 

remainder when a+b is divided by p and 0 ≤ r ≤ p-1 

known as addition modulo p. 

b) Multiplication: If a, b ε Fp then a.b=s, where s is the 

remainder when a.b is divided by p and 0 ≤ s ≤ p-1 

known as multiplication modulo p. 

c) Inversion: If is a non-zero element in Fp, the inverse of 

modulo a modulop, denoted by a 1, is the unique 

integer c ε Fp for which a.c=1. 

2) Binary Field F2m :  

The field F2m, called a characteristic two finite field or a 

binary finite field, can be viewed as a vector space of 

dimension m over the field F2 which consists of the two 

elements 0 and1. That is, there exist m elements α0, α1,…, 

αm-1 in F2m such that each element α can be uniquely 

written in Equation (1): 

α= a0 α0+a1 α1+……….+am-1 αm-1, where ai 

ε{0,1}……………………(1) 

Such a set {α0, α1,…, αm-1} is called a basis of F2m over 

F2. Given such a basis, a field element α can be 

represented as the bit string (a0 a1 ……….+am-1) 

Addition of field elements is performed by bitwise XOR-

ing the vector representations. The multiplication rule 

depends on the basis selected. ANSI X9.62 permits two 

kinds of bases: polynomial bases and normal bases. 

 

B. Domain Parameters of ECDSA(elliptic curve DSA) : 

The domain parameters for ECDSA [3] consist of a 

suitably chosen elliptic curve E defined over a finite field Fq of 

characteristic p, and a base point G ε E(Fq). Domain 

parameters may either be shared by a group of entities, or 

specific to a single user. To summarize, domain parameters 

are comprised of: 
1) a field size q, where either q=p, an odd prime, or q=2

m 

2) an indication FR (field representation) of the representation used 

for the elements of Fq 

3) (optional) a bit string seed E of length at least 160 bits 

4)  two field elements a and b in Fq which define the equation of the 

elliptic curve E over Fq' (i.e., y2 = x3 + ax + b in the case p>3, 

and y2 + xy = x3 + ax + b in the case p=2) 

5) two field elements xG and yG in Fq which define a finite point 

G=(xG, y14) of prime order in E(Fq) 

6) the order ε of the point G, with n>2160 and n>4√q and 

7) the cofactor h= E(Fq)/n. 

C. Elliptic Curves Digital Signature Algorithm over Finite 

Fields: 

The main operation is Point multiplication is achieved by 

two basic elliptic curve operations. 

 Point addition, adding two points J and K to obtain another 

point L i.e. L= J + K, require 1 inversion and 3 

multiplication operation. 

 Point doubling, adding a point J to itself to obtain another 

point L i.e. L = 2J, requires 1 inversion and 4 

multiplication operation. 

1) Key Pair generation 

Public key systems require the selection of a public key 

and a private key as inputs  to the encryption and 

decryption schemes respectively . The public and private 

keys  are algebraically related to each other by Q = [m]P 

where Q is the public key , m is the private key and P is 

the primitive (base) point of (P). The order of (P) is 

denoted by |(P)|. 

Input: all necessary parameter for P ϵ E (Fq) . 

Output: public key Q and private key m. 
a) Select a random m , 0 < m < |(P)|. 

b) Compute Q = [m]P. 

c) return (Q, m). 

2) Elliptic Curve Digital Signature Generation 

Input: All necessary parameters for P ϵ E(Fq) , private key 

k , message M , a suitable Hash function. 

Output: Signature (s0 , s1). 
d) Select a random m , 0 < m < |(P)|. 

e) Compute [M]P and treat the r-coordinate as integer im. 

f) Set s0 = im (mod|(P)|). if s0 = 0 go to step 1. 

g) Compute s1 = K-1(H(M)+Ks0) (mod|(P)|) . if s1 = 0 go to 

step 1. 

h) return (s0, s1). 

3) Elliptic Curve Digital Signature Verification  

Input: All necessary parameters for PϵE(Fq), public key Q, 

Signature (s0 , s1), the message M, the Hash function H. 

Output: r = {true, False} for the acceptance or the 

rejection of (s0, s1), respectively. 
i) Set r = False. 

j) if 0 < s0,s1 < |(P)| is satisfied then 

k) Compute t0 = s1-1s0(mod|(P)|) , t1 = s1-1H(M) 

(mod|(P)|). 

l) Compute T = [t0]P+[t1]Q. 

m) if T ≠ 0 then 

n)     Treat the x-coordinate of T as an integer iT. 

o)     if s0 ≡ iT (mod|(P)|) then 

p)         r = True. 

q)     end 

r) end 

s) end 

t) return r. 

 

IV. DIGITAL SIGNATURE BASED ON CHOATIC MAPS 

From early times, cryptography based on chaos 

theory has been studied widely. Chaotic maps have been used 

in the design of symmetric encryption protocols, S-boxes, and 

hash functions. Recently, chaotic systems have also been used 

for key agreement schemes [13][14][15]. 
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A. Chaotic maps problems: 

Let P and Q be integers and p be prime. The general 

second-order linear recurrence relation is in this Equation (2): 

Ta (M) = P ×Ta−1(M) +Q×Ta−2(M) (a ≥ 2) (2) 

Where Ta (M) ∈  GF(p) for all a. The recurrence relation 

function of chaotic maps is defined to be in Equation (2) 

With initial conditions T0 (M) =1 and T1 (M) = M. It is easy 

to see that the chaotic maps function is a special type of 

second-order linear recurrence relation as defined in previous 

equation, with P = 2M and Q=−1. 

The Chebyshev polynomials exhibit the following two 

important properties: 

1) The semi-group property: 

Tr (Ts(x)) = cos(r cos−1(cos(s cos−1(x)))) = cos(rs 

cos−1(x)) = Tsr (x) = Ts(Tr (x))                      (3) 

where r and s are positive integer numbers and x ∈  [−1, 1]. 

2) When the degree a > 1, the Chebyshev  polynomial map: 

Ta(x): [−1, 1] → [−1, 1] of degree a is a chaotic map with           

the invariant density f (x) =
1

π 1−x2
  (4) 

forLyapunov exponent λ = ln a >0. 

 

B. Anew digital signature algorithm based on chaotic maps: 

Kai Chain and Wen-Chung Kuo propose a new 

Digital Signature Algorithm and give implementation of a 

digital signature algorithm based on both cryptographic and 

chaotic system characteristics [15]. 

1) System Parameters 

First there will be exploring for system parameters as 

follow: 

 h1(.) is a strong one-way hash function whose output is 

an integer of which the length is t -bit. Here, we assume t 

= 128 as the output length of the standard hash function. 

 h1v(.) is a strong one-way hash function whose output is 

a vector which has t elements and every element belongs 

to {0,1}. 

 h2(β, γ ) is a strong one-way hash function whose input 

is two integers β and γ , its output is an integer which 

length is t -bit. 

 p is a large prime such that a factor of p − 1 is the 

product of two large primes p’ and q’ ex: n’=p’.q’and 

n’|p-1 

 g is an element in GF(p) whose order modulo p is n’ , 

and G is the multiplicative group generated by g. Note 

that the two large primes p’ and q’ are kept secret for all 

users in the system. 

2) User’s Keys Generation Phase 

a) include set of keys u1,u2,u3,…,ut ∈ [1,n’]with t length  that 

represent a set of private keys and after that calculate the 

corresponding public keys k1,k2,k3,…,kt  by :  kiui 2 =1mod 

n’ 

b) choose a secret key u ∈ [1,n’] randomly from the previous 

set  

3) Signature Generation Phase: 

To sign a message M the singer must implement this 

procedure: 

c) choose two integers R and r randomly  such that gcd(r,n’)=1 

and compute K= TR(α)mod p. 

d) If h2(M,K) = 0, then go to Step 1 and select another random 

number R; otherwise go to Step 3. 

e) Calculate the following:  x ≡ 2−1(r + _h22 (M,K) +RK2)r 

−1)mod n  

f) Compute h1v(x) = e = (e1, e2, . . . , et ), where ei∈ {0, 1} for 

all i. 

g) Calculate the following:  y = 2−1 u  ui
eit

i=1  r −
h2   2M,K+RK2r−1mod n′ 

h)  signature of M signed by the signer is (K,x,y). 

4) Signature Verification Phase: 

The verifier (destination)  verify that (K, x, y) is a valid 

signature of M signed by the signer , he/she will first 

calculate h1v(x) = e = (e1, e2, . . . , et ) and h2(M,K), and 

then checks to see whether the following equivalence holds 

or not. 

  𝑻𝒙𝟐−𝒉𝟐
𝟐(𝑴,𝑲) (∝) 

𝟐

+  𝑻𝒚𝟐  𝑲𝒊
𝒆𝒊𝒕

𝒊=𝟏 (𝒛) 
𝟐

+  𝑻𝑲𝟐 (𝑲) 𝟐  𝒎𝒐𝒅 𝒑 =

  𝑻
𝒙𝟐−𝒉𝟐

𝟐
(𝑴,𝑲)

 ∝ 𝑻𝒚𝟐  𝑲𝒊
𝒆𝒊𝒕

𝒊=𝟏  𝒛 𝑻
𝑲𝟐  𝑲 + 𝟏  𝒎𝒐𝒅 𝒑  (5) 

 

The verifier always accepts the signature as valid If the 

signer and verifier follow the signature protocol above, and 

the receiver is ensured that the message is indeed signed by 

the signer. Otherwise, the signature is invalid.  

 

C. Security analysis: 

The security of this schema depend on finding the 

key (K, x, y) and it have a good security because of 

computational complexity     A drawback of our method is that 

it requires high computational resources. 

 

V. DIGITAL SIGNATURE BASED ON TWO NP-HARD 

PROBLEMS 

The securities of digital signature algorithms are 

based on the difficulty of solving some NP-hard problems. 

These algorithms stay secure as long as the problem, on which 

the algorithm is based, stays unsolvable. The most used hard 

problems for designing a signature algorithm are prime 

factorization (FAC) and Discrete Logarithm (DL) problems. 

For improving the security, the algorithms may be designed 

based on multiple hard problems. Definitely, the security of 

such algorithms is longer than algorithms based on a single 

problem. This is due to the need of solving both the problems 

simultaneously. Many digital signature algorithm have been 

designed based on both FAC and DL [5][17][18][19]. 

 

A. MERDSA: 

KapilMadhur and others propose Modified ElGamal 

over RSA Digital Signature Algorithm (MERDSA)[20]  

proposed digital signature algorithms based on two hard 

problems-the prime factorization problem and the discrete 

logarithm problem. A new digital signature algorithm 

based on combined application of DL and FAC is 

described as follows: 

 

1) Key Generation 
a) Choose a large prime p such that computing discrete 

logarithms modulo p is difficult and two large prime 

numbers p1 and q1 such that p < n where n = p1 × q1. 

b) Choose random numbers k and v such that 1 < k, v <p−1. 

c) Choose random number b such that 1 < b < n − 1. 

d) Choose a primitive root g inZp . 

e) Calculate φ(n) = (p1 − 1) × (q1 − 1). 

f) Choose e and x such that e, x Zφ(n) . 
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g) Calculate d such that d × e mod φ(n) = 1. 

h) Calculate c such that bx  × c(mod)n = 1. 

i) Calculate u, w, and t as follows: u = gk  mod p, 

w = gy  mod p, 

t = uw  mod p, 

j) Public key is (e, x, c, g) and private key is (k, v, t, b, d). 

 

2) Signature Generation: 
k) Choose an integer z such that 1 < z < (p − 1) and it is 

relative prime to (p − 1) i. e. gcd(z, p − 1) = 1. z should be 

different for every message m and is not public. Here H (.) 

is a one way hash function. 

l) Calculate: 

h=gz  mod p, 

s1 = H(m)d  mod n, 

s2 = (H (m) × bs1) mod n, 

s3 = ((((H (m) − kw − hv) × z−1)) mod (p − 1)). 

 

If γ = 0 and/or s1 = 0 and/or s2 = 0 and/or s3 = 0 and/or 

H(m) ≡ (kw + hv) mod (p − 1) then repeat step 1 and 2 else 

tuple (γ,h, s1, s2, s3) is the signature of m. 

 

Here −kw, −hv are additive inverse of kw and hv 

respectively and z−1 is the multiplicative inverse of z with 

respect to mod (p − 1). 

 

3) Signature Verification 
m) Calculates H (m) using the received message m at 

receiver’s end. 

n) If  gH(m ) ×  s1×x≡ (γ ×hs3 × s2 × cs1 mod n) mod p 

Then the signature is valid else reject the signature. 

 

B. Security analysis: 

The performance of the proposed algorithm is 

found to be competitive to the most of the digital signature 

algorithms which are based on multiple hard problems, 

butIt is observed that if an oracle O breaks the FAC and 

DL then it can break the proposed algorithm also, if given 

the public key of the scheme and a message m. 

 

VI. CONCLUSIONS 

In this paper we give the reader basic concepts which are 

related to the concepts in digital signature cryptosystem. As 

well, we studied some digital signature schemes (Table I) 

which are based on different mathematical hard problems as 

classified earlier. Those classifications help the reader to be 

familiar with the public-key digital signature cryptosystem. 

On the other hand, the security protection of the discussed 

digital signature schemes depend on the mathematical NP-

hard problems and the randomness of the output generated. 

As a result we recommend that to use two NP-hard 

problems digital signature and chaotic map as one problem 

because of its complexity and hardness to break. 
 

 

 

 

 

 

 

 

 

 

TABLE I.Comparisons ofMathematical NP- hard problem in term of 

efficiency and performance 

 
Mathematical 

NP- hard 

problem 

Algorithm Efficiency Typical key 

size for high 

performance 

INTEGER 

FACTORIZATI

ON 

RSA digital 

signature 

schema 

Slower than other large key size 

which is 

typically 1024 -
Bit 

ON DISCRETE 

LOGARITHM 

DSA System security 

depend on                

maintaining the 
confidentiality of 

private key 

large key size 

which is 

typically 1024 -
Bit 

ELLIPTIC 
CURVE 

Elliptic Curves 
Digital 

Signature 

Algorithm over 
Finite Fields. 

 

It’s more difficult 
than other 

mathematical 

problems 

Small key size 
which is 

typically 128 -

Bit 

CHAOTIC 

MAPS 

Anew Digital 

Signature 
Algorithm 

based on 

chaotic maps 

The system 

provides high 
level of security , 

in term of key size 

and execution time 

Small key size 

which is 
typically 128 -

Bit 

COMBINATIO

N OF TWONP- 

HARD 
PROBLEMS 

MERDSA The performance 

of the proposed 

algorithm is found 
to be competitive 

to the most of the 

digital signature 
algorithms which 

are based on 

multiple hard 
problems 

large key size 

which is 

typically 1024 -
Bit 
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