
Survey on Simulation Tools for Wireless Networks
 K.Lakshmanarao Ch.R. VinodKumar K.Kanakavardhini

AsstProfessor AsstProfessor Asstprofessor

IT-Dept,GMRIT IT-Dept,GMRIT IT-Dept,GMRIT

Abstract

The establishment of a real time network scenario is

very difficult in the wireless network research area and

in the performance analysis of wireless network

protocols. So the physical arrangement of wireless

network is not easy task and very costly. Now days the

usage of simulators is increased to test wireless

networks. This paper presents advantages,

disadvantages and features of different simulators. The

usage of simulators reduces time and cost of testing,

analysis of wireless networks. We hope this survey is

useful for those who feel difficult to select appropriate

simulator to carry their research work in wireless

networks.

1. Introduction
The simulation is used to provide abstract view of

network model and its functions. The simulator used to

design the imaginary view of a real life network objects

on a computer. The developed imaginary view is used

to study the behaviour of a wireless network model, to

calculate mathematical formulas, evaluate performance

of the model through some criteria like packet delay,

loss of transmission and so on. The network simulator

provides an integrated , versatile, flexible GUI-based

network developer tool to develop and simulate a

network for an appropriate protocol stack , routing

algorithms and to test Quality of service in particular

criteria and so on[1]. In wireless networks mobility of a

network device creates so many problems. The

simulator design is very useful to test various mobility

models [8] in wireless networks as stated below:

1. Random Walk Mobility Model (including

its many derivatives): A simple mobility

model based on random directions and

speeds.

2. Random Waypoint Mobility Model: A

model that includes pause times between

changes in destination and speed.

3. Random Direction Mobility Model: A

model that forces MNs to travel to the edge

of the simulation area before changing

direction and speed.

4. A Boundless Simulation Area Mobility

Model: A model that converts a 2D

rectangular simulation area into a torus-

shaped simulation area.

5. Gauss-Markov Mobility Model: A model

that uses one tuning parameter to vary the

degree of randomness in the mobility

pattern.

6. A Probabilistic Version of the Random

Walk Mobility Model: A model that utilizes

a set of probabilities to determine the next

position of wireless network.

7. City Section Mobility Model: A simulation

area that represents streets within a city.

[5]The objective of any simulator is to accurately

model and predict the behaviour of a real world

environment. Developers are provided with

information on feasibility and reflectivity crucial to

the implementation of the system prior to

investing significant time and money. Simulation-based

testing can help to indicate whether or not these time

and monetary investments are wise.

2. Simulator selection criteria
The best simulator selection process is measured based

on Simulator Architecture, Usability, Scalability

Statistics, Underlying Network Simulation and System

Limitations [7].

1. Simulator Architecture [7]: This criteria

relating to the design and working style of

the simulator, the supported features and

their implementation. These criteria also

include whether it supports structured or

unstructured overlay simulation, or both;

whether the simulator works on discrete

event simulation basis, that is whether it

uses a scheduler which synchronises

message transfer between nodes, adding

delay as necessary; how it implements

remote procedure calls; how the identifiers

608

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100244

are chosen; whether it allows for distributed

simulation, i.e. can simulations be run

across a number of machines to allow

greater scaling or faster simulation runtime?

These criteria also include aspects of how

node behaviour is simulated. Whether both

iterative and recursive routing can be

simulated.

2. Usability: [7]This criteria focus on the

flexibility of the simulator to learn and use,

i.e. whether the simulator API allows code

to be easily understood, conversion of

source code is compatible with other

simulators. Documentation support and

online support in bug fixing exist or not.

3. Scalability: [7] It concentrates on how the

simulation model supports to thousands of

nodes or more.

4. Statistics: [7] This criteria concentrates on

flexibility in produced results, graphs and

statistical analysis of a simulation model.

3. SIMULATION TOOLS ANALYSIS

This section succinctly introduces various wireless

network simulators. The reviews mainly based on

published or publicly available information about the

simulation tools.

NS2: NS2 [9, 10] is an open-source, Object-oriented

discrete event-driven simulator designed specifically

for research in computer communication networks.

Since its inception in 1989, NS2 has continuously

gained tremendous interest from industry, academia,

and government. [2,5] NS-2 Simulations are based on a

combination of C++ and OTcl. In general, C++ is used

for implementing protocols and extending the ns-2

library. OTcl is used to create and control the

simulation environment itself, including the selection

of output data. Simulation is run at the packet level,

allowing for detailed results. The fig.1 describes usage

of OTcl language in NS-2.

Fig.1. OTcl usage in NS-2

Simulations can be observed graphically by Network

Animator (NAM) and xgraph is used for simulation

results. After compiling the simulation source to

executable and running it to generate trace files,

simulation results can be observed graphically by using

Network Animator (NAM). Ns-2 does not scale well

for sensor networks [2, 5]. This is in part due to its

object-oriented design. Another drawback to ns-2 is the

lack of customization available. Packet formats, energy

models, MAC protocols, and the sensing hardware

models all differ from those found in most sensors. One

last drawback for ns-2 is the lack of an application

model. In many network environments this is not a

problem, but sensor networks often contain interactions

between the application level and the network protocol

level.

NS3: The NS-3[11,12] simulator is a discrete-event

network simulator targeted primarily for research and

educational use. The ns-3 project, started in 2006, is an

open-source project. The Open source licensing based

on GNU GPLv2 compatibility. Ns-3[11,12] is not an

extension of ns-2; it is a new simulator. The two

simulators are both written in C++ but ns-3 does not

support the ns-2 APIs [12]. It provides documentation

Coverage of the C++ APIs using Doxygen as well as

Documentation of the Bake integration tool.

It supports simulation of wireless networks MAC Layer

protocols, routing protocols and Qos parameters. NS-3

supports key abstractions like node, application,

channel, Net Devices, Topology Helper. The script can

be written in either C++ or python. The modules

supported by NS-3 are given in below fig.2.

Fig.2. the different modules of NS-3

OMNET++: OMNeT++[14] is an open source

object-oriented modular discrete event network

simulation framework. It has a generic architecture, so

it has been) used in various problem domains such as

modeling of wired and wireless communication

609

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100244

networks, protocol and queueing networks modeling,

modeling of multiprocessors and other distributed

hardware systems, it is used to perform validating of

hardware architectures, evaluating performance aspects

of complex software systems and in general, modeling

and simulation of any system where the discrete event

approach is suitable, and can be conveniently mapped

into entities communicating by exchanging messages.

OMNeT++[14] simulations can be run under various

user interfaces. Graphical, animating user interfaces are

highly useful for demonstration and debugging

purposes, and command-line user interfaces are best for

batch execution. The simulator as well as user

interfaces and tools are highly portable. They are tested

on the most common operating systems like Linux,

Mac OS/X, Windows, and they can be compiled out of

the box or after trivial modifications on most Unix-like

operating systems.

In contrast to ns-2 and ns-3, OMNeT++[2,6,14] is

not a network simulator by definition, but a general

purpose public source, component-based discrete event

network simulator discrete event based simulation

framework[15]. OMNeT++[14] also supports parallel

distributed simulation. it can use several mechanisms

for communication between partitions of a parallel

distributed simulation, for example MPI or named

pipes. The parallel simulation algorithm can easily be

extended, or new ones can be plugged in. The main

simulation frameworks[15] for OMNeT++ 4.x are

INET framework , OverSim,veins, INETMANET,

MIXIM and castalla.

The INET framework is a standard protocol model

library of OMNeT++[15]. INET contains models for

the Internet protocol stack (TCP, UDP, IPv4, IPv6,

OSPF, BGP, etc.) for wired and wireless link layer

protocols (Ethernet, PPP, IEEE 802.11, etc), support

for mobility, MANET protocols, DiffServ, MPLS with

LDP and RSVP-TE signalling, several application

models, and many other protocols and components.

There are several INET-based model frameworks,

maintained by independent research groups some of

those models are listed below: OverSim[15] is an open-

source overlay and peer-to-peer network simulation

framework for the OMNeT++ simulation environment.

The simulator contains several models for structured

(e.g. Chord, Kademlia, Pastry) and unstructured (e.g.

GIA) P2P systems and overlay protocols. Veins[15] is

an open source Inter-Vehicular Communication (IVC)

simulation framework composed of an event-based

network simulator and a road traffic micro-simulation

model. INETMANET[15] is a fork of the INET

Framework, maintained by Alfonso Ariza Quintana. It

is kept up-to-date with INET, and adds a number of

experimental features and protocols, mainly for mobile

ad-hoc networks, many them written by Alfonso Ariza.

MiXiM[15] is an OMNeT++ modeling framework

created for mobile and fixed wireless networks like

wireless sensor networks, body area networks, ad-hoc

networks, vehicular networks, etc.

Castalia[15] is a simulator for Wireless Sensor

Networks (WSN), Body Area Networks (BAN) and

generally networks of low-power embedded devices. It

is used by researchers and developers to test their

distributed algorithms and/or protocols in realistic

wireless channel and radio models, with a realistic node

behaviour especially relating to access of the radio.

Castalia's salient features include: model for temporal

variation of path loss, fine-grain interference and RSSI

calculation, physical process modeling, node clock

drift, and several popular MAC protocols implemented.

Castalia is highly parametric. It provides tools to help

run large parametric simulation studies , process and

visualize the results.

 OMNeT++ is capable of running most TinyOS

simulations by NesCT application that converts TinyOS

source to simulator compatible C++ code [13]. NesC

simulation code interchange between sensor platforms

is possible but only in a restricted sense, because the

protocol and hardware implementation in the simulator

is simplified, and not all hardware is supported.

TINYOS: [17] is an open source, BSD-licensed

operating system designed for low-power wireless

devices, such as those used in sensor networks,

ubiquitous computing, personal area networks, smart

buildings, and smart meters. A worldwide community

from academia and industry use, develop, and support

the operating system as well as its associated tools

610

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100244

J-SIM: JSim has been developed by a team at the

Distributed Real-time Computing Laboratory (DRCL).

The project has been sponsored by the National

Science Foundation (NSF), DARPA’s Information

Technology Office, Air Force Office of Scientific

Research’s Multidisciplinary University Research

Initiative, the Ohio State University and the

University of Illinois at Urbana-Champaign. J-Sim is

free and available with source code. JSim[18] is a Java-

based simulation system for building quantitative

numeric models and analyzing them with respect to

experimental reference data. JSim's primary focus is in

physiology and biomedicine, however its

computational engine is quite general and applicable to

a wide range of scientific domains. JSim models may

intermix ODEs, PDEs, implicit equations, integrals,

summations, discrete events and procedural code as

appropriate. JSim's model compiler can automatically

insert conversion factors for compatible physical units

as well as detect and reject unit unbalanced equations.

JSim[19] model calculations are specified in

JSim's own Mathematical Modeling Language(MML)

an easy-to-read text-based language. MML models are

most often expressed in terms of mathematical

equations (for example, ordinary and partial differential

equations, implicit equations), but formulation via

discrete events and function calls to Java, C and Fortran

are also available. MML is constructed so that model

writers may intermix mathematics, events and

procedural code as needed. The detailed architecture of

Jsim available at [19] gives light on different supported

modules.

Its script uses JAVA and TCL, the TCL Scripting is

an essential part of J-Sim, use it to "glue" all the

components and define how the system operates. It

makes it possible to manipulate Java objects in the Tcl

environment, such as creating an object from a Java

class, invoking a method of a Java object, or

accessing a field variable of a Java object. The

architecture is shown below.

Fig.3. The architecture of JSim

OPNET: This simulator is developed by OPNET

technologies. OPNET had been originally developed

at the Massachusetts Institute of Technology (MIT)

and since 1987 has become commercial software. It

provides a

comprehensive development environment supporting

the modelling of communication networks and

distributed systems. Both behaviour and performance

of modelled systems can be analysed by performing

discrete event simulations.

The main programming language in OPNET is C

(recent releases support C++ development). The initial

configuration(topology setup, parameter setting) is

usually achieved using Graphical User Interface

(GUI), a set of XML files or through C library

calls.

NetSim: It is used to create platform independent

software that could be used in simple, consumer

electronic products. Java designed for simple, efficient,

platform-independent program for creating WWW-

based programs. Using Java one can create small

programs called applets that are embedded into an

HTML document and viewable on any Java-

compatible browser. Java applets are compiled into a

set of byte-codes, or machine-independent processing

instructions.
SimPy: It is a process-oriented discrete-event

simulator. Unlike the other simulators, no public

available network models exist for SimPy. Instead, it is

a bare simulation API written in Python. In SimPy, the

basic simulation entities are processes. They are

executed in parallel and may exchange Python objects

among each other. Most processes include an infinite

loop in which the main actions of the process are

performed. Besides abstractions for processes and the

related exchange of objects, SimPy provides

611

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100244

instructions for the synchronization of simulation

processes and commands for the monitoring of

simulation data.

QualNet: It is a commercial network simulator from

Scalable Network Technologies, in 2000-2001. It is

ultra-high-fidelity network simulation software that

predicts wireless, wired and mixed-platform network

and networking device performance. For

implementing new protocols, Qualnet uses C/C++

and follows a procedural paradigm. Uses the parallel

simulation environment for complex systems.

4. Conclusions
The objective of this paper have been to provide survey

on various simulators to design abstract model for

wireless network and discussed existing pros and cons

of each simulator. With this knowledge network model

developer choose apt simulator to carry out the work. It

allows users to select the most suitable simulator to test

their test bid performance analysis and results.

5. References
[1] Mrs. Saba Siraj, Mr. Ajay Kumar Gupta, Mrs Rinku-

Badgujar, “Network Simulation Tools Survey,”

International Journal of Advanced Research in

Computer and Communication Engineering. ,Vol. 1,

Issue 4, June 2012.

[2] Marko Korkalainen, Mikko Sallinen, Niilo Kärkkäinen,

Pirkka Tukeva, “Survey of Wireless Sensor Networks

Simulation Tools for Demanding Applications”, Fifth

International Conference on Networking and Services

2009.

[3] Harsh Sundani, Haoyue Li, Vijay K. Devabhaktuni,

Mansoor Alam, & Prabir Bhattacharya, “Wireless

Sensor Network Simulators A Survey and

Comparisons”, International Journal Of Computer

Networks (IJCN), Volume (2) : Issue (5).

[4] E. Egea-López, J. Vales-Alonso, A. S. Martínez-Sala,

P. Pavón-Mariño, J. García-Haro, “Simulation Tools for

Wireless Sensor Networks”, Summer Simulation

Multiconference - SPECTS 2005.

[5] David Curren University of Binghamton, “A Survey of

Simulation in Sensor Networks”.

[6] Elias Weing¨ artner, Hendrik vom Lehn and Klaus

Wehrle, “A performance comparison of recent network

simulators”, IEEE ICC 2009.

[7] Stephen Naicken, Anirban Basu, Barnaby Livingston

and Sethalat Rodhetbhai, “A Survey of Peer-to-Peer

Network Simulators”, PGNet 2006.

[8] T . Camp, J. Boleng, and V . Davies, “Survey of

Mobility Models”, Wireless Communication & Mobile

Computing (WCMC): Special issue on Mobile Ad Hoc

Networking: Research, Trends and Applications, vol. 2,

no. 5, pp. 483-502, 2002.

[9] NS-Guide.pdf Text book from Springer

[10] The Network Simulator-ns2.

http://www.isi.edu/nsnam/ns.

[11] NS-3 Tutorial http://www.nsnam.org/ns-3-

18/documentation/

[12] NS-3 Documentation http://www.nsnam.org/ns-3-

18/documentation/

[13] NS3 http://www.nsnam.org

[14] OMNet ++ discrete event simulation system, Available

from: http://www.omnetpp.org.

[15] OMNet++ available

at:http://www.omnetpp.org/doc/omnetpp/manual/usman

.html

[16] OMNet++ frameworks available at:

http://www.omnetpp.org/models

[17] TinyOS available at: http://www.tinyos.net/

[18] JSim available at http://bioeng.washington.edu/jsim/

[19] JSim documentation available at

http://bioeng.washington.edu/jsim/docs/overview.html.

612

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100244

