
Survey on Software Modularization Techniques

Sunil Kumar N

Post-Graduate Student

Department of Computer Science and

Engineering, Karunya University

India

Bright Gee Varghese

Assistant professor

Department of Computer Science and

Engineering, Karunya University

India

Abstract

When software is evolved during the

manufacture process, due to poor design decision,

it is often hard to understand the packages and to

maintain them. This is because they group together

classes with unrelated responsibilities. One way to

improve the quality of the software is to decompose

the package and come up with higher cohesion.

This paper is a survey on how package can be re-

modularized by using structural and semantic

measures. A software maintainer might modify the

source code without an insight into the system

design. As the software changes and evolves over

time, it is inevitable that the undisciplined

approach to software maintenance will have

negative effect on the quality of the software.

Eventually the system structure might change.

Appropriate abstractions are needed to understand

the structure and to cluster it. Architectural level

views must be created directly from the source

code.

1. Introduction

During the maintenance of a software system,

most of the effort is usually devoted to

understanding the structure of the software system.

This task is facilitated if a system is well

modularized with less coupling and maximum

cohesion, making it easier to change it and also to

evaluate the side effects of a change. Coupling is

the degree of dependency between the modules and

Cohesion is the inter-dependency within a single

module. Low coupling is the sign of a well-

structured software system and a good design. The

concept of software cohesion has been defined by,

who defined it as the degree to which the internal

contents of a module are related. In Object

Oriented software, cohesion is usually applied at

class level and it can be extended to package level.

When combined with high cohesion, it provides

high reliability and maintainability.

In the software domain, an important

application of cluster analysis is to modularize a

software system by grouping together software

entities that are similar or related to each other to

achieve minimum coupling and maximum

cohesion. Entities within a cluster share similar

characteristics or features and they are dissimilar

from entities in other clusters. As the software

changes and evolves over time, it is inevitable that

the undisciplined approach to software

maintenance will have negative effect on the

quality of the software. Eventually the system

structure might change. Appropriate abstractions

are needed to understand the structure and to

cluster it. Architectural level views must be created

directly from the source code. A graph of entities

and relations in the source code are produced by

bunch which is also explained in this paper.

To determine the components and relations in

the source code, design extraction starts at parsing

the source code. To produce views of the software

structure, the parsed code is then analyzed. When

the software engineer isolates the subsystem the

software structure is taken into consideration,

whichever is relevant to his work? The quality of

graph partition is evaluated by the approach given

that represents the software structure and uses

heuristics to navigate through the search space of

all the possible graph partition. Several possible

heuristic approaches are possible to solve the

problem and are surveyed in this paper by taking

the referred papers. Software clusters are

independent of any programming language and to

achieve this we need the source code analysis tool

in which directed graph can be obtained from

source code.

2054

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120893

2. Survey Among Various

Modularization Criteria

2.1. Package Coupling

Abdeen H, Ducasse S, Sahraoui HA and

Alloui I [1] propose this approach where coupling

takes place inside the package. When software

evolves to meet environment changes,

modularization quality degrades due to

environmental factors. Inter package connectivity is

optimized automatically by designing and

implementing a search-based approach and

improve the quality of software modularization.

This approach is inspired by the technique

simulated annealing which is also search-based.

This is similar to annealing process in metallurgy.

Now, the objective is local optimization, so

simulated annealing is recommended. Automated

Object Oriented class design improvement is well

suited for its performance. Connectivity among

packages is decreased, specially cyclic connectivity

among packages. New modularizations from the

existing ones were exploited along with several

principles of package design quality. Classes are

always public and it is a well-known fact that they

can be transferred from one package to another.

Classes can be interchanged between packages.

Kuhn A, Ducasse S and Girba T [2] say that

when the formal information is considered the

informal information that is the semantics

contained in the source code is overlooked.

Developer information is hidden in the code

naming and the software as a whole should be

understood and the software should be enriched

with the developer as well. Linguistic information

can be found in the source code and this paper

exploits that by using information retrieval system.

Identifier names and comments can be found out by

using this. Semantic clustering is a technique in

Latent semantic indexing which groups the source

artefacts by looking at the language containing the

similar vocabularies. These groups that are formed

are called semantic clusters and they reveal the

intention of the code. When two code segments

have similar semantic groups, they may have

similar tasks to accomplish. The topics are then

compared with each other and the similar links

between them are found out and some labels are

automatically retrieved. As it is based on identifier

names, they are language independent. Software

analysis is done based in informal information and

does not cover up in depth.

Poshyvanyk D, Marcus A, Ferenc R and

Gyimothy T [3] propose an approach for impact

analysis which uses information retrieval

techniques. When there is coupling, it directly

impacts the program comprehension and when the

strength of coupling is measured it is a direct

predictor of fault-proneness, ripple effects and

external software quality. Coupling measures are

introduced which investigates a new set of

conceptual coupling measures during impact

analysis and take into consideration how much

identifiers and comments relate to each other.

Information retrieval techniques are used here for

conceptual coupling between the classes where by

information we mean the language of the program.

New dimensions are captured as a part of coupling

measures where Conceptual Coupling Between

Classes are indicators of the change in ripple

effects in the software. Classes can be effectively

ranked using CCBC.

2.2. Software Restructuring

M. O. Keeffe and M. O. Cinneide [4] say that

the cost of the software can be reduced by keeping

the behaviour of the software intact and changing

the design in an improved way. A software tool is

proposed which is capable of refactoring object

oriented programs which confines to the quality

model and formulates the task as a search problem.

Refactoring is applied to increase the flexibility,

reusability and understandability of the software.

This is defined by a contemporary quality model.

Well defined quality models can be used to refactor

the object oriented programs and one such model is

the QMOOD that defines functions from Quality

Attribute Indices. However, this was not found to

be suitable in softwares that had large number of

featureless classes.

C.-H. Lung, X. Xu, M. Zaman, and A.

Srinivasan [5] suggest a similar technique as to

reduce the cost of software and at the same time

keep up the quality of the software.

Understandability must be restored and it should be

flexible as well. In this paper, cohesion is the major

concern and an approach is presented at the

functional level. Automatic support is given to

identify ill-structured and low cohesive function.

The heuristic advice given helps designers to

2055

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120893

establish how and why to restructure the program.

High cohesive sub functions inside a low cohesive

function can be identified. This reveals the

potential problems in existing code. Functional

clusters and non-functional clusters are identified

by the developers and the software designers.

Singleton clusters have also to be placed and it is

upto the developers to decide as to where to place

them. Big data structures are used to group

different functional activities together.

M. Harman and L. Tratt [6] propose an

approach at the design level. As the software

system evolves, its structure degrades and as this

happens, refactoring aims at improving the quality

of the system. Current system combine metrics in a

complex fashion and a single sequence of

refactoring is produced. Pareto front is produced

when multiple runs of search based refactoring

system make up a pareto front. Multiple metrics are

used to determine the refactorings. Users should

come up with a value that maximises the trade-off

between metrics most appropriate to them. Direct

and Indirect approaches are proposed that define

the search based refactoring. It shows that the

existing system relies on complex fitness functions

and metrics. It is always optional to not to use

complex fitness functions to evaluate the metrics,

so if we have an alternative to it, it is better to

overcome the existing system. Therefore

refactoring of software makes the working of

software simpler yet effective.

2.3. Modularization Approach

B. S. Mitchell and S. Mancoridis [7] introduce

a new concept called bunch. The detailed

discussion on bunch is given here in this paper.

Appropriate abstractions are created from the

structure of the software to simplify the software

maintenance activities. There are documented

versions of the abstractions but are sometimes out

of date and are no longer used. The search space of

several open source systems is studied in detail.

Bunch’s clustering results are highlighted in several

aspects where individual clustering results are

considered. It points out as to why bunch’s

clustering results were not at all obvious. Results

produced by Bunch were common and structural

properties were independent of whether the MDGs

represented real systems or not. Large landscapes

can be modelled by using large clustering results.

Search–based clustering algorithms like Bunch can

be evaluated using search based algorithm.

Practitioners have to be reliable as to whether they

are working perfectly and this is done using

systems such as bunch.

Ducasse S, Pollet D, Suen M, Abdeen H and

Alloui I [8] show us how packages can be related

among each other and how the relations can be

demonstrated. Large software are constituted by

large number of packages. Many developers fail to

understand how packages are positioned and

related to each other. Package surface blueprint

shows a relationship that a package has with

another and makes the job of the developer easier.

Packages are represented under the notion of

package surfaces. Package surfaces are the group of

relationships according to the package they refer to.

Inheritance structure of the package is shown along

with references made by the packages.

Visualization of the packages was successfully

done where large applications were given as inputs.

Badly designed packages were pointed out. Tests

were conducted with several software maintainers.

Mitchell BS and Mancoridis S [9] have given

an insight into automatic modularization of

software using bunch tool. Appropriate abstraction

is needed for the software structure as these

systems are large and complex and we need to

make it more understandable. Architectural level

views are produced by abstraction in the system

level directly from its source code. Bunch

clustering system is examined in this paper which

uses the search technique to perform clustering.

Subsystem decomposition is performed by Bunch

by partitioning a graph of entities and relations in a

given source code. To evaluate the quality of the

graph partition, a fitness function is used and a

satisfactory solution is found out. The making of

views of the software system is demonstrated by

Bunch. Simulated annealing cooling schedules and

MQ measurement functions are not included.

2.4. Software Clustering

Wu J, Hassan AE and Holt RC [10] compare

the clustering algorithms in the context of software

evolution. Meaningful subsystems have been

obtained to form clusters for which softwares are

partitioned to aid maintenance and analysis tasks.

Meaningful clusterings for real life softwares are

obtained for achieving growth and continual

change. Six software clustering algorithms have

2056

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120893

been considered here. Stability, authoritativeness

and extremity of cluster distribution are the three

criteria on the basis of which comparisons have

been conducted. Clustering techniques are inspired

by various batch processing techniques which

produce the implementation of the software tasks.

The six algorithms are found not to be matured

enough for the production of software representing

large evolutionary changes. Before these clustering

algorithms are ready to be widely adopted, more

work needs to be done.

Harman M, Swift S and Mahdavi K [11]

present the search based software engineering

which are based on the nature of the fitness

function that is used to guide the search. The nature

of the search space was given an insight into when

these highly robust search spaces were given.

Search based module clustering was the aim of this

paper. Fitness function that is used for software

module clustering are compared here. Another

fitness function that is applied here is the EVM.

But the results show that both metrics are relatively

robust in the presence of some external factors such

as noise. Highly tentative observations were made

when the when the two fitness functions were

tested on entirely random graphs. Software

engineering can be used as a vehicle to in order to

improve the understanding of problems that are

usually faced by software engineering.

Andreopoulos B., An A., Tzerpos V., Wang

X. [12] propose an approach which have a better

idea than the previous works that rarely incorporate

in the clustering process of dynamic information

such as the function invocation that take place

during the runtime. As the software architecture

most of the times are multilayerd, but then the

clustering algorithms consist of flat system

decomposition. In this paper, a clustering algorithm

called MULICsoft has been introduced which

incorporates both staitic and dynamic information

for clustering process to take place. The core

elements of each cluster are assigned to the top

layer. Experimental results are produced by testing

the components in large open source systems.

MULICsoft was successful in coming up with

decompositions that had meaningful results and

were close to the clusters that were produced by

experts. And the most important thing was that

MULICsoft did not compromise with the quality of

the software system.

Kishore C. and Srinivasulu A [13] give us

better results on unweighted MDGs because the

previous works showed us results only for

weighted MDGs. This was because of the low

modularization quality. The technique used here

was to maximize the number of clusters with the

same number of modules. MQ value was increased

due to this technique. This paper also describes the

Pareto optimality approach for multi objective

clustering. This was considered better for

unweighted graphs.

2.5. Architecture Reconstruction

Ponisio and Nierstrasz [14] tackle complexity

by organizing classes into packages. For a given

developer, a particular package may be neither

straight forward nor obvious. Misplaced classes are

detected by the technique proposed by this paper,

by analyzing how client packages access the given

provider package. Locality is considered as the

degree to which classes are reused by the common

clients that appear in the software. A virtualization

layout technique is done to support the locality of

the classes into packages.

Pollet, Ducasse, Poyet, Alloui, Cˆımpan, and

Verjus [15] present an approach which aids in

knowing the large applications and maintain them.

Some of the software evolves, so the architecture

drifts inevitably. Checking the architecture is

therefore important. This paper presents us with the

technique to reconstruct the architecture.

3. Conclusion

There has been an interest in search based

formulation of this problem that captures the twin

objective of high cohesion and low coupling. Two

novel multi-objective formulations of the software

module clustering problem has been taken into

consideration in which several different objectives

have been represented separately. First Pareto multi

objective formulation is presented which shows

how the approach can yield superior results. Richer

solution spaces afforded by Pareto optimal

approach can be used for the task of restructuring

and improving modular cohesion and coupling and

is able to produce better solutions than existing

single objective solution. Increase in performance

is obtained by increased computational cost.

2057

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120893

4. References

[1] Abdeen H, Ducasse S, Sahraoui HA, Alloui I

(2009) Automatic package coupling and cycle

minimization.

[2] Kuhn A, Ducasse S, Gîrba T (2007) Semantic

clustering: identifying topics in source code. Inf

Softw Technol 49(3).

[3] Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy

T (2009) Using information retrieval based

coupling measures for impact analysis. Empir

Software Eng 14(1).

[4] M. O’Keeffe and M. O. Cinn´eide. Search-

based refactoring for software maintenance. Journal

of Systems and Software, 81(4).

[5] C.-H. Lung, X. Xu, M. Zaman, and A.

Srinivasan. Program restructuring using clustering

techniques. J. Syst. Softw., 79(9).

[6] M. Harman and L. Tratt. Pareto optimal search

based refactoring at the design level. In

GECCO’07.

[7] Mitchell BS, Mancoridis S (2006) On the

automatic modularization of software systems

using th bunch tool. IEEE Trans Softw Eng 32(3).

[8] Ducasse S, Pollet D, Suen M, Abdeen H,

Alloui I (2007) Ackage surface blueprints: visually

supporting the understanding of package

relationships. In: Proceedings of international

conference on software maintenance. Paris, France.

[9] Mitchell BS, Mancoridis S (2006) On the

automatic modularization of software systems

using th bunch tool. IEEE Trans Softw Eng 32(3).

[10] Wu J, Hassan AE, Holt RC (2005)

Comparison of clustering algorithms in the context

of software evolution.

[11] Harman M, Swift S,Mahdavi K (2005) An

empirical study of the robustness of two module

clustering fitness functions. In: Proceedings of the

2005 conference on genetic and evolutionary

computation. ACM Press, Washington DC, USA.

[12] Andreopoulos, B., An, A., Tzerpos, V., Wang,

X (2005) Multiple layer clustering of large

software systems. In: Proceedings of 12th Working

Conference on Reverse Engineering.

[13] Kishore, C., Srinivasulu, A (2012) Multi-

objective approach for software moduleclustering.

International Journal of Advanced Research in

Computer Engineering& Technology (IJARCET) 2

(3).

[14] Ponisio and Nierstrasz (2006) Using context

information to re-architect a system. In Soft.

Measurement Eur. Forum.

[15] Pollet, Ducasse, Poyet, Alloui, Cˆımpan, and

Verjus (2007) Towards a process-oriented software

architecture reconstruction taxonomy.

2058

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120893

