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Abstract 

Software Effort Estimation carries inherent risk and this risk would lead to uncertainty 

and some of the uncertainty factors are project complexity, project size etc. In order to 

reduce the uncertainty, fuzzy logic is being used as one of the solutions. In this 

Chapter interval type-2 fuzzy logic is applied for software effort estimation. Two 

different methodologies have been discussed as two models, to estimate effort by 

using Takagi-Sugeno and Interval Type-2 fuzzy logic. The Formulas that were used to 

implement these models including Regression Analysis, Takagi-Sugeno membership 

functions, foot print of uncertainty intervals and de-fuzzification process through 

weighted average method were outlined along with analysis. The experimentation is 

done with NASA software data set on the proposed models, and the results are 

tabulated. The measured efforts of these proposed models are compared with 

available models from literature and finally the performance analysis is done based on 

parameters such as   MARE, VARE and VAF.   

 

1. Interval Type-2 Fuzzy Logic: 

A type-2 fuzzy set, denoted as A, is characterized by a type-2 Membership Function 

(MF), µA(x, u), where x X and u Jx, i.e. 
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In which 0≤µA(x, u)≤1, if the universes of discourse X and the domain of secondary 

membership function Jx are continuous, A can be expressed as: 
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Where ∫ denotes union over all admissible x and μ. If the universes of discourse X and 

Jx are both discrete, ∫ is replaced by Σ, A can also be expressed as: 
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Where Σ denotes union over x and u. In the same way, if X is continuous and Jx is 

discrete or X is discrete and Jx is continuous, A can be expressed as: 
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The first restriction that is consistent with the T1 constraint 0 ≤ μA(x) ≤ 1. When 

uncertainties disappear a type-2 membership function is reduced to a type-1 

membership function, in which case the variable u equals μA(x)[11,12,13,14,15]. The 

second restriction that 0 ≤ μA(x, u) ≤1 is consistent with the fact that the amplitude of a 
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membership function should lie between or equal to 0 and 1. When μA(x, u) ≡1, A is 

an IT2 FS, it can still be expressed as a special case of general T2 FS as follow: 
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If universes of discourse X and Jx are both discrete, the above equation can be 

expressed as: 
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In the above equation “+” denotes union. 

 Uncertainty in the primary memberships of an IT2 FS consists of a bounded 

region named as Footprint of Uncertainty (FOU). It is the union of all primary 

memberships, i.e. 

x
xx
JUAFOU )(  

This is a vertical-slice representation of FOU, because each of primary membership is 

a vertical slice. The Upper Membership Function (UMF) and Lower Membership 

Function (LMF) of A are two T1 MFs that bound the FOU. The UMF is associated 

with the upper bound of FOU (A) and is denoted as )(xA , Xx and the LMF 

is associated with the lower bound of FOU(A) and is denoted as 

Xxx
A
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 Therefore, the IT2FS A can be denoted 

as, Effort= orsituationdiscreateinxixx iAjA
)(/)](),([
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Effort = xxxi iA

xx
A

/])(,)([  (in continuous situation). 

The following Figure 1 shows the components of Interval Type-2 Fuzzy Logic. 
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Figure 1: Structure of Interval Type-2 Fuzzy Logic 

 

Fuzzification is the process which Translates inputs (real values) to fuzzy values. 

Inference System applies a fuzzy reasoning mechanism to obtain a fuzzy output. 

Knowledge Base contains a set of fuzzy rules, it is of the form R
i
 :if x1 is F1

i
  and …. 

xn is Fn
i
  then Y is G

i
 ,i=1,2…m and a membership functions set known as the 

database. Type Reducer transforms a Fuzzy Set into a Type- 1 Fuzzy Set. The 

defuzzification traduces one output to precise values. 

For an interval type-2 fuzzy system (ITF2S) 
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are the firing intervals for the membership functions positive and negative 

respectively, 
2

,
1 PLPL

  are left hand side uncertainty region, 
2

,
1 PRPR

 are 

right hand side uncertainty region.  

The following section deals the two methodologies that have been used on the 

proposed models in order to estimate effort. 

 

2 Model Description 

 

2.1 Methodology for Model -1  

In this model the mean of FOU `s as a firing interval in interval type-2, is considered 

to estimate the cost (effort) of the software. 

Step1: This step estimate the parameters of a, b (the amplitude a and the exponent b) 

by regression analysis (power regression). 

Step2: The variable “size” is then fuzzified by two input fuzzy sets named “Positive” 

and “Negative” respective. The mean of the sizes (L) is input for determining the 

fuzzy memberships. The representation shown in Figure3.2, the membership value 

μP(xi) and μN(xi)  is either 0 or 1 when xi is outside the interval [-L,L]. This process is 

known as Fuzzification. 

  

 

 

 

 

 

  

 

Figure 2: Universe of Discourse 
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Step 3: Then triangular membership function is applied to reduce the uncertainty 

(FOU-Foot Print of Uncertainty).The uncertainty at the left side (LMF) and right side 

(UMF) are then calculated by using following fuzzy rule: If x1 is μ(x1), x2 is 

μ(x2)…………xi is μ (xi) then μp1= [min (μ(x1), μ(x2)……, μ (xi))], [max (μ(x1), 

μ(x2)……,μ(xi))]. The same logic is used then for Negative membership function. 

Step 4: After identifying the LMF and UMF for both of these positive and negative 

membership functions, the mean of the LMF and UMF FOU is employed as a firing 

interval for converting Type-2 into Type-1 fuzzy sets, this is known as Type Reducer. 

Step 5: Finally in order to convert Fuzzy values into output (effort), weighted average 

defuzzification method is used. 

 

2.2 Methodology for Model -2: 

In this model Takagi-Sugeno Fuzzy Controller is considered, for determining the 

memberships, and Interval Type-2 logic and fuzzy operator for determining the firing 

intervals. 

Step1: This step estimate the parameters of a, b (the amplitude a and the exponent b) 

by regression analysis (power regression). 

Step 2: The variable “size” is fuzzified by two input fuzzy sets named “Positive1” 

and “Positive2” respectively. The mean and stddev (standard deviation) of size is used 

to determine the fuzzy memberships. The (mean+stddev) for the positive1 and (mean-

stddev) for positive2 are the L values. The representation is shown in Figure3.3, the 

membership value μp1(xi) and μp2(xi)  is either 0 or 1 when xi is outside the interval [-

L,L]. This process is taken as Fuzzification.  

Step 3: Then triangular membership function is applied, to reduce the uncertainty 

(FOU). The uncertainty at the left side (LMF) and right side (UMF) are calculated by 

using following fuzzy rule: If x1 is μ(x1), x2 is μ(x2)…………xi is μ (xi) then μp1= 

[min (μ(x1), μ(x2)……, μ (xi))], [max (μ(x1), μ(x2)……,μ(xi))]. The same logic is 

used similarly for positive2 membership function. 

Figure3.3:  Membership Functions of Fuzzy sets in the Size’s Space 

Step 4: After identifying the LMF and UMF for both of these positive1 and positive2 

membership functions, the mean of the LMF and UMF FOU, fuzzy operator 

max(OR), Left side Uncertainty interval, and Right side Uncertainty interval  for 

Models are used as  firing interval for converting Type-2 into Type-1 fuzzy sets.  

Step 5: Finally in order to convert Fuzzy values into Output (Effort), weighted 

average defuzzification method is used. 

 

3. MODEL ANALYSIS 

The section analyses the proposed models.   
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Regression Analysis: By using power regression we calculate [www.xuru.com] a, b 

parameters Y= ax
b
, Where x is the variable along the x-axis. The function is based on 

linear regression with both axis are scaled logarithmically. 

 

Membership Functions for Model-1, Model-2  

Membership Functions Used in Model-1: The mathematical definitions of the 

“Positive” and “Negative” fuzzy sets were identical for the input variable size are 

equation 1.1 and 1.2. 
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The value of L affects the control performance and we take the mean of the input 

(size) as the L value. 

Membership Functions Used in Model-2:  

The mathematical definitions of the two “Positive” fuzzy sets were identical for the 

input variable size is equation 1.3 and 1.4. 
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The value of L affects the control performance and we taken (mean+stddev), (mean-

stddev) of the input (size) as the L1 and L2 value. 

 

Fuzzy Triangular Membership Function (TMF): 

The triangular MF in specified by three parameters ( , m, ) as Figure : 
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                                                         m        

                                  Figure 3: Triangular Member Function 

The parameters ( , m, )  (with  < m < ) determine the x – coordinates of the three 

corners of the underlying triangular MF. 

Fuzziness: 

Fuzziness of TFN ( , m, ) is defined as: 

m = model value   = Left Boundary   = is right boundary 

 Fuzziness of TFN (F) = 
2m

αβ
,  0 < F< 1 

The Higher the value of fuzziness, the more fuzzy is TFN. The value of fuzziness to 

be taken depends upon the confidence of the estimator. A confident estimator can take 

smaller values of F. Let (m, 0) divides internally, the base of the triangle in ration K : 

1 where K in the real positive number. 

 So that  m = 
1K

Kβα
 

As per the above definitions,  F = 
2m

αβ
 

 So  m*
1K

2KF
1α   and  m*

1K

2F
1β  

If we consider F = 0.1 and K = 1 then  

 0.9m
2

1x0.1x2
1*mα  

 1.1m0.11m
2

1x0.1x2
1*mβ

 
Footprint of Uncertainty in Universe Of Discourse:  

MODEL-1: 

After applying fuzzification process on the size by using the positive and negative 

member functions, the Footprint of Uncertainty (FOU) in universe of discourse with 

uncertainty regions will be the one as shaded in the following figure 3.5. 

 
Figure 4: Footprint of Uncertainty and Prediction Intervals for Methodology-1 

a

a 

b c 
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2
,

1 PLPL
  are left hand side uncertainty region, 

2
,

1 PRPR
 are right hand 

side uncertainty region. 

 

MODEL-2: 

After applying fuzzification process on the size by using two positive member 

functions, the Footprint of Uncertainty (FOU) in universe of discourse with 

uncertainty regions will be the one as shaded in the following figure 3.6. 

 

 
Figure 5: Footprint of Uncertainty and Prediction Intervals for Methodology-2 

22,11 LPLP   are left hand side uncertainty region, 22,11 RPRP  are right hand 

side uncertainty region. 

 

Firing Intervals : 

Firing Intervals for Methodology-1: 

Here the means of FOU’s are taken as firing strength. 
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Firing Intervals for Methodology-2: 

Case-I: 

Here the means two positive member functions of FOU’s are taken as firing strength. 
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Case-II: 

The uncertainty considered at the left, right hand side interval i.e. fuzzy operator OR 

(max) is used to determine the firing interval 
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J
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Case-III: 

The uncertainty considered only at the right hand side interval to determine the  firing 

interval 
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Case-IV: 

The uncertainty considered only at the left hand side interval to determine the firing 

interval 
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Defuzzification: 

In these models weights average method, which is of the following form are 

considered. 

                                          C = 
N

i

i

N

i

ii

w

w

1

1

     (1.5) 

where wi is the weighting factor and μi is the membership obtained from triangular 

member function.   
 

Performance Measures: 

 Three criterions were considered and they are outlined below  

 1) Variance Accounted  For (VAF) 

% VAF = 100x
effort)(measuredvar

Effort)EstimatedEffort(Measuredvar
1

       
 

2 ) Mean Absolute Relative Error (MARE) 

     % MARE = mean 100x
effort)(measured

Effort)EstimatedEffort(Measuredabs

         
 

 3) Variance Absolute Relative Error (VARE) 
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% VARE = var 100x
effort)(measured

Effort)EstimatedEffort(Measured(abs

         
 

 

The following section describes the experimentation part of the work, and to conduct 

the study and in order to establish the effectively of the models  dataset of 10 projects 

from NASA software project data [2] were used .  

 

4. MODEL EXPERIMENTATION 

Application on Model-1: 

The membership function definitions and the memberships are shown here using 

equation 1.1 and 1.2; the L value is the mean of the input sizes i.e. 46. By applying 

power regression analysis (www.xuru.com)  for the input sizes and effort the  

obtained values are : a=2.7 and b=0.8523. The membership functions are defined as 

follows using equation 3.1 and 3.2.  
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By applying Triangular membership function for the above membership functions the 

left and right boundaries obtained are shown below. 

 

Foot print of uncertainty intervals for the μP is [0.4705 to 0.5751] for left hand side i.e. 

LMF and [0.9 to 1.1] for right hand side i.e. UMF. Foot print of uncertainty intervals 

for the μN is [0.3277 to 0.4005] for left hand side i.e. LMF and [0.4295 to 0.5249] for 

right hand side i.e. UMF. The means of FOU intervals is taken as firing strength.  

Px
J = ( ), ( )x xPP i i

= [0.5228, 1] 

Nx
J = ( ), ( )x xNN i i

= [0.3641, 0.4772] 

The type reducer action by using the triangular membership function which is applied 

to the uncertainty region as a secondary member function and the results obtained  are 

shown in Table 1and Table 2. Defuzzification process is done through weighted 

average method. 

Table 1:Triangular Fuzzy Number of Adjusted Size and  Effort Estimation for 

Positive Membership Function 

S.No Size(m) α = 

0.5228m 

m β =m aα
b 

am
b 

aβ
b 

Ep 

1 2.1 1.09788 2.1 2.1 2.923672 5.081492 5.081492 4.978739 

2 3.1 1.62068 3.1 3.1 4.074635 7.081925 7.081925 6.938721 

3 4.2 2.19576 4.2 4.2 5.27833 9.174008 9.174008 8.9885 

4 12.5 6.535 12.5 12.5 13.37204 23.24129 23.24129 22.77132 

5 46.5 24.3102 46.5 46.5 40.97051 71.20884 71.20884 69.76892 

6 54.5 28.4926 54.5 54.5 46.90638 81.52569 81.52569 79.87715 

7 67.5 35.289 67.5 67.5 56.28813 97.83165 97.83165 95.85339 

8 78.6 41.09208 78.6 78.6 64.08698 111.3865 111.3865 109.1341 
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9 90.2 47.15656 90.2 90.2 72.06489 125.2525 125.2525 122.7197 

10 100.8 52.69824 100.8 100.8 79.22287 137.6934 137.6934 134.9091 

 

Table 2: Triangular Fuzzy Number of Adjusted Size and Effort Estimation for 

Negative Membership Function 

 

The following Table 3 shows the Measured Effort, Estimation Effort, Absolute Error 

and Relative Error.   

 

Table3 : Error Calculations 

S.No Size Measured 

 Effort 

Estimated  

Effort(Ep+En/2) 

Absolute  

Error 

Relative 

 Error 

1 2.1 5 4.394408 0.605592 0.121118 

2 3.1 7 6.124357 0.875643 0.125092 

3 4.2 9 7.933563 1.066437 0.118493 

4 12.5 23.9 20.09876 3.801238 0.159048 

5 46.5 79 70.48888 8.51112 0.107736 

6 54.5 90.8 80.70142 10.09858 0.111218 

7 67.5 98.4 96.84252 1.557483 0.015828 

8 78.6 98.7 110.2603 11.5603 0.117126 

9 90.2 115.8 123.9861 8.1861 0.070692 

10 100.8 138.3 136.3013 1.998739 0.014452 

 

Application on Model-2: 

The membership function definitions and the memberships shown here are obtained  

using equation 3.3 and 3.4, the L value is the (mean + stddev) of the input sizes for 

Positive1 is (46+38.28)  84.28, and L value is the (mean – stddev) of the input sizes 

for Positive2 is (46-38.28) 7.72. By applying power regression (www.xuru.com) 

analysis for the input sizes and effort the obtained  values of a, b are a=2.7 and 

b=0.8523 

1

1

1

0 84.28

( ) 84.28 84.28
2

1 84.28

P

kloc

kloc L
kloc kloc

L

kloc

 

S.No Size(m) α = 

0.3641m 

M β = 

0.4772m 

aα
b 

am
b 

aβ
b 

EN 

1 2.1 0.76461 2.1 1.00212 2.147928 5.081492 2.704878 3.810078 

2 3.1 1.12871 3.1 1.47932 2.993503 7.081925 3.769708 5.309992 

3 4.2 1.52922 4.2 2.00424 3.877819 9.174008 4.883324 6.878626 

4 12.5 4.55125 12.5 5.965 9.824005 23.24129 12.37133 17.4262 

5 46.5 0 46.5 0 0 71.20884 0 71.20884 

6 54.5 0 54.5 0 0 81.52569 0 81.52569 

7 67.5 0 67.5 0 0 97.83165 0 97.83165 

8 78.6 0 78.6 0 0 111.3865 0 111.3865 

9 90.2 0 90.2 0 0 125.2525 0 125.2525 

10 100.8 0 100.8 0 0 137.6934 0 137.6934 
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 and 
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Case-1:  The means of FOU intervals is taken as firing strength. 

By applying Triangular membership function for the above membership functions the 

left and right boundaries obtained are shown in the following Table3.8 and Table3.9 

[μP1( , m, ) , μP2( , m, )] 

Foot print of uncertainty intervals for the μP1 is [0.5724 to 0.9] and  Foot print of 

uncertainty intervals for the μP2 is [0.6996 to 1.1]. The means of FOU intervals is 

taken as firing strength. 

Px
J = ( ), ( )x xPP i i

= [0.7362, 0.8998] 

The type reducer action by using the triangular membership function and associated 

results are shown in Table3.10. Defuzzification process is done through weighted 

average method. 

Table 4: Triangular Fuzzy Number of Adjusted Size and Effort Estimation for Case-1 

The following Table 5 shows the Measured Effort, Estimated Effort, Absolute Error 

and Relative Error.   

Table 5: Error Calculations for Case-1 

S.No Size Measured 

 Effort 

Estimated  

Effort 

Absolute  

Error 

Relative 

 Error 

1 2.1 5 4.81766 0.182337 0.036467 

2 3.1 7 6.71423 0.285767 0.040824 

3 4.2 9 8.6977 0.302304 0.033589 

4 12.5 23.9 22.0346 1.865395 0.07805 

5 46.5 79 67.5117 11.4883 0.145422 

6 54.5 90.8 77.2929 13.5071 0.148757 

7 67.5 98.4 92.7523 5.647746 0.057396 

S.No 
Size 

(m) 

α= 

0.7362m 
M 

β 

=0.8998

m 

aα
b 

am
b 

aβ
b 

Effort 

1 2.1 1.54602 2.1 1.88958 3.914099 5.081492 4.644189 4.817663 

2 3.1 2.28222 3.1 2.78938 5.454964 7.081925 6.472469 6.714233 

3 4.2 3.09204 4.2 3.77916 7.066424 9.174008 8.384511 8.697696 

4 12.5 9.2025 12.5 11.2475 17.90196 23.24129 21.24119 22.03461 

5 46.5 34.2333 46.5 41.8407 54.84972 71.20884 65.08075 67.5117 

6 54.5 40.1229 54.5 49.0391 62.79644 81.52569 74.50975 77.2929 

7 67.5 49.6935 67.5 60.7365 75.35636 97.83165 89.41245 92.75225 

8 78.6 57.86532 78.6 70.72428 85.79716 111.3865 101.8008 105.6033 

9 90.2 66.40524 90.2 81.16196 96.47767 125.2525 114.4735 118.7494 

10 100.8 74.20896 100.8 90.69984 106.0605 137.6934 125.8438 130.5444 
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8 78.6 98.7 105.603 6.903304 0.069942 

9 90.2 115.8 118.749 2.949393 0.02547 

10 100.8 138.3 130.544 7.75559 0.056078 

 

Case 2: Using Fuzzy Operator for firing strength 

This case deals with  uncertainty at the left, right hand side interval i.e. fuzzy operator 

OR (max) is used here to determined the firing interval 

         )(),(max,)(),(max
xP

J
2211 i

xPi
x

Pi
xPi

x
P

 

Foot print of uncertainty intervals for the μP1 is [0.5724 to 0.9],  Foot print of 

uncertainty intervals for the μP2 is [0.6996 to 1.1].The fuzzy operator max of FOU 

intervals is taken as firing strength. 

Px
J = ( ), ( )x xPP i i

= [0.9, 1.1] 

The Table 6 shows the Effort estimation using above firing intervals. 

 

Table 6: Triangular Fuzzy Number of Adjusted Size and Effort Estimation for 

Case-2 

S.No Size(m) α = 0.9m m β =1.1m aα
b 

am
b 

aβ
b 

Effort 

1 2.1 1.89 2.1 2.31 4.645 5.081 5.511 5.265 

2 3.1 2.79 3.1 3.41 6.473 7.081 7.681 7.337 

3 4.2 3.78 4.2 4.62 8.386 9.174 9.95 9.506 

4 12.5 11.25 12.5 13.75 21.245 23.241 25.208 24.082 

5 46.5 41.85 46.5 51.15 65.093 71.208 77.234 73.786 

6 54.5 49.05 54.5 59.95 74.523 81.525 88.424 84.476 

7 67.5 60.75 67.5 74.25 89.429 97.831 106.11 101.373 

8 78.6 70.74 78.6 86.46 101.82 111.386 120.812 115.419 

9 90.2 81.18 90.2 99.22 114.495 125.252 135.851 129.786 

10 100.8 90.72 100.8 110.88 125.867 137.693 149.345 142.678 

 

The Table 7 shows the Measured Effort, Absolute Error, Estimated Effort and 

Relative Error.   

Table 7: Error Calculations for Case-2 

S.No Size Measured 

 Effort 

Estimated  

Effort 

Absolute  

Error 

Relative 

 Error 

1 2.1 5 5.265 0.265 0.0529 

2 3.1 7 7.337 0.337 0.0481 

3 4.2 9 9.506 0.506 0.0562 

4 12.5 23.9 24.082 0.182 0.0076 

5 46.5 79 73.786 5.214 0.066 

6 54.5 90.8 84.476 6.324 0.0696 

7 67.5 98.4 101.373 2.973 0.0302 

8 78.6 98.7 115.419 16.719 0.1693 

9 90.2 115.8 129.786 13.986 0.1207 
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10 100.8 138.3 142.678 4.378 0.0316 

 

Case 3: Right-hand Side Uncertainty Interval as firing interval  

In this case the uncertainty considered only at the right hand side interval i.e.  Firing 

interval 

         )(),(
xP

J
22 i

xPi
x

P
 

Foot print of uncertainty intervals for the μP1 is [0.5724 to 0.9] Foot print of 

uncertainty intervals for the μP2 is [0.6996 to 1.1].The more uncertainty is on the right 

hand side.  

Px
J = ( ), ( )x xPP i i

= [0.6996, 1.1] 

The Table 8 shows the Effort estimation using above firing intervals. 

Table 8: Triangular Fuzzy Number of Adjusted Size and Effort Estimation 

Case-3 

 

The Table 9 shows the Measured Effort, Absolute Error, Estimated Effort and 

Relative Error.   

Table 9: Error Calculations for Case-3 

S.No Size 
Measured 

Effort 

Estimated 

Effort 

Absolute 

Error 

Relative 

Error 

1 2.1 5 5.222 0.222 0.0444 

2 3.1 7 7.278 0.278 0.0397 

3 4.2 9 9.428 0.428 0.0475 

4 12.5 23.9 23.887 0.013 0.0005 

5 46.5 79 73.187 5.813 0.0735 

6 54.5 90.8 83.791 7.009 0.0771 

7 67.5 98.4 100.55 2.15 0.0218 

8 78.6 98.7 114.482 15.782 0.1598 

9 90.2 115.8 128.733 12.933 0.1116 

10 100.8 138.3 141.52 3.22 0.0232 

 

Case 4:  Left-hand Side Uncertainty Interval   

The uncertainty in this case is considered only at the left hand side interval i.e.  firing 

interval 

S.No Size(m) 
α = 

0.6996m 
M 

β 

=1.1m 
aα

b 
am

b 
aβ

b 
Effort 

1 2.1 1.469 2.1 2.31 3.747 5.081 5.511 5.222 

2 3.1 2.168 3.1 3.41 5.221 7.081 7.681 7.278 

3 4.2 2.938 4.2 4.62 6.765 9.174 9.95 9.428 

4 12.5 8.745 12.5 13.75 17.14 23.241 25.208 23.887 

5 46.5 32.531 46.5 51.15 52.516 71.208 77.234 73.187 

6 54.5 38.128 54.5 59.95 60.125 81.525 88.424 83.791 

7 67.5 47.223 67.5 74.25 72.151 97.831 106.11 100.55 

8 78.6 54.988 78.6 86.46 82.147 111.386 120.812 114.482 

9 90.2 63.103 90.2 99.22 92.373 125.252 135.851 128.733 

10 100.8 70.519 100.8 110.88 101.548 137.693 149.345 141.52 
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         )(),(
xP

J
11 i

xPi
x

P
 

Foot print of uncertainty intervals for the μP1 is [0.5724 to 0.9] Foot print of 

uncertainty intervals for the μP2 is [0.6996 to 1.1].The more uncertainty is on the left 

hand side.  

Px
J = ( ), ( )x xPP i i

= [0.5724, 0.9] 

The Table 10 shows the Effort estimation using above firing intervals. 

Table 10: Triangular Fuzzy Number of Adjusted Size and Effort Estimation 

for Case-4 

S.No Size(m) 
α = 

0.5724m 
M β =0.9m aα

b 
am

b 
aβ

b 
Effort 

1 2.1 1.202 2.1 1.89 3.158 5.081 4.645 4.781 

2 3.1 1.774 3.1 2.79 4.4 7.081 6.473 6.663 

3 4.2 2.404 4.2 3.78 5.702 9.174 8.386 8.633 

4 12.5 7.155 12.5 11.25 14.445 23.241 21.245 21.871 

5 46.5 26.616 46.5 41.85 44.26 71.208 65.093 67.012 

6 54.5 31.195 54.5 49.05 50.672 81.525 74.523 76.721 

7 67.5 38.637 67.5 60.75 60.808 97.831 89.429 92.067 

8 78.6 44.99 78.6 70.74 69.233 111.386 101.82 104.823 

9 90.2 51.63 90.2 81.18 77.852 125.252 114.495 117.872 

10 100.8 57.697 100.8 90.72 85.584 137.693 125.867 129.58 

 

The Table 11 shows the Measured Effort, Absolute Error, Estimated Effort and 

Relative Error.   

Table 11: Error Calculations for Case-4 

S.No Size 
Measured 

Effort 

Estimated 

Effort 

Absolute 

Error 

Relative 

Error 

1 2.1 5 4.781 0.219 0.0438 

2 3.1 7 6.663 0.337 0.0481 

3 4.2 9 8.633 0.367 0.0407 

4 12.5 23.9 21.871 2.029 0.0848 

5 46.5 79 67.012 11.988 0.1517 

6 54.5 90.8 76.721 14.079 0.155 

7 67.5 98.4 92.067 6.333 0.0643 

8 78.6 98.7 104.823 6.123 0.062 

9 90.2 115.8 117.872 2.072 0.0178 

10 100.8 138.3 129.58 8.72 0.063 

 

 

5. RESULTS AND DISCUSSIONS 

One of the objective of the present work is to employ Interval Type-2 fuzzy logic for 

tuning the effort parameters and test its suitability for software effort estimation. This  

methodology is then tested using NASA dataset provided by Boehm. The results are 

then compared with the models in the literature such as Baily-Basili, Alaa F. Sheta 

and Harish.       

Comparison with other models: 
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The Table 12 compares effort estimation of TSFC- Interval Type-2 Models with other 

available models. The resulting data indicate that the approximation accuracy of the 

type-2 fuzzy systems methodology which is used in this chapter is comparable with the 

Bailey-Basili, AlaaF. Sheta, Harish models. The  fuzzy systems approach to effort 

estimation has an advantage over the other models as the Interval Type-2 fuzzy systems 

architecture determines the firing intervals for inputs which  reduces the factors of  

uncertainty, and the fuzzy  rules be extracted from numerical data, which may easily be 

analyzed and the implementation is also relatively easy.    

 

Table 12: Effort Efforts in Man-Months of Various Models with Interval Type-2 

Models 

 

Assessment through Graph Representation of Measured Effort Vs Estimated 

Effort: 

The Figure 6 shows measured effort Vs estimated effort of interval type-2 models and 

one can notice that the estimated efforts are very close to the measured effort. 

S.No Size Measured 

effort 

Bailey –

Basili 

Estimate 

Alaa F. 

Sheta 

G.E.model 

Estimate 

Alaa F. 

ShetaModel 

2 Estimate 

Harish 

model1 

Harish 

model2 

Interval 

Type-2 

Model-

I 

TSFC Model 2 

Case-I Case-II Case-III Case-IV 

1 2.1 5 7.226 8.44 11.271 6.357 4.257 4.394 4.822 5.265 5.222 4.781 

2 3.1 7 8.212 11.22 14.457 8.664 7.664 6.124 6.721 7.337 7.278 6.663 

3 4.2 9 9.357 14.01 19.976 11.03 13.88 7.933 8.707 9.506 9.428 8.633 

4 12.5 23.9 19.16 31.098 31.686 26.252 24.702 20.099 22.06 24.082 23.887 21.871 

5 46.5 79 68.243 81.257 85.007 74.602 77.452 70.489 67.591 73.786 73.187 67.012 

6 54.5 90.8 80.929 91.257 94.977 84.638 86.938 80.701 77.385 84.476 83.791 76.721 

7 67.5 98.4 102.175 106.707 107.254 100.329 97.679 96.842 92.863 101.373 100.55 92.067 

8 78.6 98.7 120.848 119.27 118.03 113.237 107.288 110.26 105.73 115.419 114.482 104.823 

9 90.2 115.8 140.82 131.898 134.011 126.334 123.134 123.986 118.891 129.786 128.733 117.872 

10 100.8 138.3 159.434 143.0604 144.448 138.001 132.601 136.301 130.7 142.678 141.52 129.58 
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Figure 6: Measured Effort Vs Estimated Effort of TSFC models 

 

Figure 7: Effort Estimations of Various models Vs TSFC Models 

 

PERFORMANCE ANALYSIS: 

Parameters such as  VAF, MARE, and VARE are employed to asses as well as to 

compare the performance of the estimation models. The integration of Takagi-Sugeno 

and Interval Type-2 fuzzy logic can be powerful tool when tackling the problem of 
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effort estimation. It can be seen from the resulting data that the Fuzzy logic models 

for Effort estimation outperform the Baily-Basili, Alaa F. Sheta and Harish models. 

The computed MARE, VARE and VAF for all the models are indicated in Table 13.     

 

Table 13 Summary Results of VAF, MARE and VARE  

Model 

Variance 

Accounted For 

(VAF%) 

Mean Absolute 

Relative 

Error(MARE%) 

Variance 

Absolute 

Relative 

Error(VARE%) 

Bailey –Basili Estimate 93.147 17.325 1.21 

Alaa F. Sheta G.E.Model Estimate 98.41 26.488 6.079 

Alaa F. Sheta Model 2 Estimate 98.929 44.745 23.804 

Harish model1 98.5 12.17 80.859 

Harish model2 99.15 10.803 2.25 

Interval Type-2 Model1 99.276 9.602 0.228 

TSFC Model 2 Case-I 99.1 6.858 0.19 

TSFC Model 2 Case-II 98.63 6.522 0.22 

TSFC Model 2 Case-III 98.74 5.991 0.225 

TSFC Model 2 Case-IV 98.98 7.312 0.21 

 

 

Figure 8: Variance Accounted For  Of Various Models Vs TSFC Models   
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Figure 9: Mean Absolute Relative Error of Various models Vs TSFC Models   

 

Figure 10: Variance Absolute Relative Error of various models Vs TSFC Models   
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6. CONCLUSION : 

 

In this study we proposed new model structures to estimate the software cost (Effort) 

estimation. Interval Type-2 fuzzy sets is used for modeling uncertainty and 

impression to better the effort estimation. Rather than using a single number, the 

software size can be regarded as a fuzzy set yielding the cost estimate also in the form 

of a fuzzy set. These proposed models were able to provide good estimation 

capabilities as per the as per the  experimental study taking parameters like VAF, 

MARE, and VARE. The work of Interval Type-2 fuzzy sets can be applied to other 

models of software cost estimation. However in these models  only the size is used as 

input for estimating the effort. But there are so many “Cost Drivers” which have to be 

considered for measuring effort. In fact the main difficulty is to determine which cost 

driver really capture the reason for differences in estimated effort among the projects. 

Therefore for large projects of size>100 KDLOC the estimation process requires data 

to be more accurate, consistent  with appropriate cost drivers. It is reasonable to 

assume that one should specify cost drivers for large projects as they are essential  to 

calibrate the  estimation model. 
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