
Task Scheduling in Homogeneous

Multiprocessor Multi-Network Systems using

Evolutionary Techniques

Aparna Vishwanath Ramesh Vulavala Sapna U. Prabhu
 Dept. of Electronics Engg. Dept. of Chemical Engg. Dept. of Electronics Engg.

 FRCRCE, DJSCE,

 FRCRCE,
 Mumbai, India Mumbai, India

 Mumbai, India

Abstract: Minimizing the total execution time of all tasks in a

given network by scheduling on a multi-processor system is an

important and challenging problem. The classical techniques

of optimization require considerable time to address this

problem. This problem gathers larger proportions as the

number of task networks increases. This work proposes a

genetic algorithm based task scheduling method for a multi-

network multiprocessor system, with and without

interleaving. The proposed method achieves reduced total

processing time in both the cases. The proposed algorithm is

tested by varying number of populations and crossover

probability.

Keywords- Directed Acyclic Graph, Multi- network,

Multiprocessor, Total Processing Time, Edge-zeroing,

Interleaving, Genetic Algorithms.

I. INTRODUCTION

The multiprocessor scheduling problem is generally stated

as follows: Given a multiprocessor computing system and a

specific number of tasks to execute, "how does one

efficiently schedule the tasks to make optimal use of the

computing resources "? [1].In general, a deterministic

search of the solution space to identify an optimal solution

to this NP-complete problem is computationally and

temporally exhaustive [2]. The extent of this issue depends

mainly upon the following factors: the number of tasks,

execution time of the tasks, precedence order of the tasks,

number of processors, their uniformity

(homogeneous/heterogeneous) and inter-task

communication.

In multiprocessor systems, factors like load balancing, and

allocation of tasks onto different processors when they are

heterogeneous, may also influence the overall performance.

In this work, all the processors are assumed to be

homogeneous and the load balancing takes into

consideration the utilization factor of each processor.

As task scheduling in multiprocessor systems is a NP-

complete problem, the classical techniques take a large

amount of time to arrive at the optimal solution. Hence, in

our work, we propose genetic algorithm as a technique to

solve the scheduling problem in lesser time compared to

the classical techniques.

In this work, the multiprocessor scheduling problem is

considered as a parallel program represented by an directed

acyclic task graph (DAG). Following are the assumptions

made for the system under consideration:

 Tasks have precedence constraints.

 The period of the tasks, execution time of the

tasks and the communication delay between the

tasks executing on different processors are

available as inputs to the system.

 The tasks in the system are assumed to be periodic

and non-preemptive.

 The processors are assumed to be identical

(homogeneous).

The rest of the paper is organized as follows: Section 2

gives a brief review of related work. Section 3 describes

the preliminaries relevant to the work done. Proposed

algorithm for the task scheduling problem is explained in

Section 4. Section 5 provides simulation results,

performance analysis followed by the conclusions.

II. RELATED WORK

S. H. Houet. al [3] implemented a genetic algorithm based

task scheduling method for homogeneous multiprocessor

systems using string representations. The strings are

ascending order of tasks arranged with respect to the height

values. An axiom that „A schedule satisfying the height-

ordering condition is a legal schedule‟ has been followed in

their work. The total processing time of the system has

been optimised. The results obtained are compared with list

algorithm and optimal schedule generated for random task

graphs. Kwok et. al. [4] suggested various static

scheduling algorithms for allocating directed task graphs to

multiprocessors. A detailed procedure of every algorithm

with an example has been presented in their work. In our

work we have used heuristics for initial population

generation, as suggested in this paper. Kwok et. al. [5]

proposed an efficient technique for scheduling task graphs

to multiprocessors using parallel genetic algorithm. In their

work the initial population is generated using various

heuristics. Since the precedence order was to be preserved,

a variant of crossover viz. order crossover has been used.

Concept of adaptive probabilities for crossover and

mutation operation have been used. The results have been

recorded for single network scenario with variation in

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100606

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

632

communication to computation ratio. Yogesh R. Sahare [6]

proposed a hybrid genetic algorithm for task scheduling in

multiprocessor systems. The initial population has been

generated using the earliest start value of each node in the

task graph, a neighbourhood search technique has been

used for selecting parent chromosomes with fitness value

more than 75% of mean population fitness. The reason for

doing so is stated as ‘possibility of finding the best solution

by performing genetic operations on these parents is

higher than that of the rest of the population’. Results have

been recorded for optimised schedule with an effort to

reduce the make-span of the system. The results obtained

have been compared with Genetic Algorithm, Tabu search

technique and simulated annealing. Ranjit Rajak et. al. [7]

proposed a task scheduling method for homogeneous

multiprocessor system using Fork-Joint method. The fork-

joint mechanism has been used at every level of DAG.

Firstly a fork or joint structure is identified, then the task

with maximum fork or joint value is scheduled on to the

same processor as that of the parent task provided all the

precedence constraints are satisfied. The results obtained

have been compared with the heuristic based algorithms. It

has been concluded that their proposed method fetches

lower values of total processing time compared to the

heuristic based algorithms.

III. PRELIMINARIES

Genetic algorithms (GA) are search algorithms based on

mechanics of natural selection and natural genetics. As

such they represent an intelligent exploitation of a random

search used to solve optimization problems. Although

randomised, GAs are by no means random, instead they

exploit historical information to direct the search into the

region of better performance within the search space. The

basic techniques of GA are designed to simulate processes

in natural systems necessary for evolution especially those

follow the principles first laid down by Charles Darwin of

"survival of the fittest.”

The GA maintains a population of n chromosomes

(solutions) with associated fitness values. Parents are

selected to mate, on the basis of their fitness, producing

offspring via a reproductive plan. Consequently highly it

solutions are given more opportunities to reproduce, so that

offspring inherit characteristics from each parent. As

parents mate and produce offspring, room must be made

for the new arrivals since the population size is kept at a

static size. Individuals in the population die and are replace

by the new solutions, eventually creating a new generation

once all mating opportunities in the old population have

been exhausted. In this way it is hoped that over successive

generations better solutions will thrive while the least fit

solutions die out.

After an initial population is randomly generated, the

algorithm evolves through three operators [5]:

1. Selection (Reproduction)

2. Crossover

3. Mutation (optional)

Selection: Individual solutions are selected through a

fitness-based process, where fitter solutions (as measured

by a fitness function) are typically more likely to be

selected.

Crossover: Crossover is the GA's primary local search

routine. The crossover/reproduction operator computes two

offspring for each parent pair given from the selection

operator. These offspring, after mutation, make up the new

generation. A probability of crossover is predetermined

before the algorithm is started which governs whether each

parent pair is crossed-over or reproduced. Reproduction

results in the offspring pair being exactly equal to the

parent pair. The crossover operation converts the parent

pair to binary notation and swaps bits after a randomly

selected crossover point to form the offspring pair.

Mutation (optional): Mutation of a chromosome is

achieved by simply flipping a randomly selected bit of the

chromosome.

Compared to other existing evolutionary techniques viz.

Ant Colony Optimization, Differential Evolution etc.,

Genetic Algorithms prove to be robust.

In the single network scenario [1], various available

heuristics viz. t-level, b-level, sl-level, alap and random

generation were used as suggested by Kwok and Ahmad

[4] to generate the initial population for Genetic

Algorithms.

t-level: The t-level of a node „n‟ is the length of the longest

path from an entry node to „n‟ (excluding „n‟).

b-level: The b-level of a node „n‟ is the length of the

longest path from node „n‟ to an exit node.

sl-level: sl levels are static b-levels computed as (t-level –

b-level).

alap: The ALAP (as late as possible) start-time of a node is

a measure of how far the node‟s start time can be delayed

without increasing the schedule length.

Genetic algorithms are best suited to continuous

optimization problems. As the scheduling problem is

discrete in nature with a severe constraint on maintaining

the order sequence of tasks, it requires certain

modifications as suggested by Kwok and Ahmad [5] and

cannot be used in its original form.

IV. PROPOSED ALGORITHM

In the system under consideration, since the tasks have

precedence constraints between them, the order of tasks

needs to be maintained as given by the DAG. Thus, the aim

of the work is to minimize the total execution time without

violating the precedence order.

The proposed strategy is to tackle all the networks

simultaneously.

The detailed description of the work done is as below:

Initial population generation:

The initial population for GA is formed by ordering the

tasks along with their parent tasks in the descending order

of their communication delays. The edge zeroing concept

has been used in this algorithm which is a linear clustering

technique.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100606

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

633

The edge zeroing procedure is illustrated in the flowchart

below:

The procedure starts by zeroing the edges having

maximum communication delay between tasks. Edge

zeroing is done by scanning through all the networks in the

system simultaneously, finding the tasks having maximum

communication delayand then zeroing it. However these

can only be executed after completing their preceding

tasks. The record of parent tasks of respective tasks in the

task graphs are maintained as parent node matrices. Hence

the predecessors are stored along with the maximum delay

task in a string. The string is then removed from the multi-

network system, and stored in a list. We then search for

the next maximum delay task in the remaining set of tasks.

This process is iterated till all the tasks become part of

some string. These strings are treated as separate entities in

forming the initial populations of GA. Since these strings

satisfy the precedence order automatically, the normal

operations of GA can be applied to them, without further

modifications. Zeroing the edges dictates that the tasks are

scheduled on the same processor.

The strings are then scheduled onto processors on the basis

of Utilization Factor of the processor. The Utilization

Factor (Ui) of a processor is given as,

𝑈𝑖 = 𝑒𝑖/𝑝𝑖
Where,

ei – execution time of the task

pi – period of the task

When the processor utilization exceeds 80% (i.e. 0.8)

scheduling starts from the next processor and so on. When

tasks from the same string are scheduled onto different

processors, the communication delay and idle time are

added to the total processing time (TPT).

TPT (on different processors) = 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 +
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 + 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

TPT (on same processor) = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠

The fitness function (FF) of each member of the population

is then calculated as the reciprocal of the total processing

time(𝑇𝑃𝑇).
𝑭𝑭 = 𝟏/(𝟏 + 𝑻𝑷𝑻)

In the selection process we ensure that the best sequence is

passed on to the next generation. Other sequences are

selected based on their fitness values. This is followed by

crossover operation.

STAR

T

CONSTRUCT DAG’s

WITH

COMMUNICATION

DELAY, EXECUTION

TIME AND PERIOD

VECTORDETAILS
CONSTRUCT

PARENT NODE

MATRIX

SCAN THE

COMMUNICATION

DELAY MATRIX

(CDM) FOR

MAXIMUM

COMMUNICATION

DELAY VALUE

IS CDM

VALUE =

MAXIMUM?

ZERO THE

MAXIMUM CDM

VALUE

Y

ES

N

O

A

no

Scan through the

communication delay matrices

of all the networks

simultaneously

Zero the communication delay between the

respective tasks and schedule them on the

same processor

Store this task information as string starting

with the parent node and ending the tasks

having maximum delay between them

Scan the parent node matrix of the respective

network and schedule the parent tasks if any

before the child task

Eliminate the tasks present in the string from

the unscheduled task string (to avoid task

duplication)

First Maximum

communication delay

value found?

yes

Iterate till all the tasks in the system are

accounted for in the strings formed

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100606

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

634

Figure 1 : FLOWCHART

As mentioned in Section 3, crossover occurs with a certain

crossover probability called the crossover rate. In this

work, adaptive probability is used as suggested by Srinivas

et. al [8]. Figure 1 gives a better insight of the work done.

The adaptive crossover rate µc is defined as follows:

µc = 𝒌𝒄(𝒇𝒎𝒂𝒙 − 𝒇′)/(𝒇𝒎𝒂𝒙 − 𝒇𝒂𝒗𝒈)

The program developed is scalable and adaptable to the

change in number of tasks and task graphs of a parallel

processing system. The number of processors on the target

multiprocessor system depends upon the utilization factor

of processors, which is evaluated when scheduling takes

place. Therefore, it can be said that the number of

processor in the system depends upon the period and

execution time of tasks. Other parameters that can be easily

modified include the number of iterations of the genetic

algorithm (number of generations) and population size.

V. RESULTS AND CONCLUSIONS

VARIATION IN NUMBER OF POPULATIONS (Np) :

Following are the results obtained for a scenario when

networks are considered independently one at a time with

variation in the size of populations.

Figure 2: Single Network Scenario

Following are the results obtained for a scenario when

networks are considered simultaneously (interleaving) with

variation in size of populations.

Figure 3: Interleaved Networks Scenario

In both cases, an increase in the population size decreases

the average of total processing time, as expected. However,

for a specific population size the proposed interleaving

technique shows considerable improvement in minimizing

the total processing time. This is because of the additional

freedom available with the strings coming from all the

networks of the system.

VARIATION IN CROSSOVER PROBABILITY (µc) :

Following are the results obtained for a scenario when

networks are considered independently one at a time with

variation in crossover probability value.

SCHEDULE THE TASK ON

THE SAME PROCESSOR

SCAN THE PARENT NODE

MATRIX AND SCHEDULE

PREDECESSORS ON

AVAILABLE PROCESSORS

IS UF > = 0.8 ?

GOTO THE NEXT

PROCESSOR

CALCULATE PROCESSING

TIME AND TOTAL

PROCESSING TIME

CREATE RANDOM INITIAL

POPULATION FOR GA

APPLY SELECTION,

CROSSOVER AND

COMPUTE TPT

COMPUTE THE

OPTIMISED SCHEDULE

STOP

YES

NO

A

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100606

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

635

Figure 4: Average Total Processing Time with variation in kc for single

network scenario

Following are the results obtained for a scenario when

networks are considered simultaneously (interleaving) with

variation in the value of crossover probability.

Figure 5: Average Total Processing Time with variation in kc for

interleaved networks

From fig. 5 and 6 it is clearly seen that for higher values of

kc in the single network scenario, we achieve better values

of average processing time whereas for interleaved network

case the lower the kc value the better the result. The reason

possibly is that, the heuristic based initial population in

case of interleaving seems to be very close to the optimal

value requiring only minor adjustments from cross-over.

Whereas in the case of the individual networks, the initial

population seems to be far from optimal value depending

heavily on cross-over to reach the final value.

FUTURE WORK

The same strategy can be easily extended to cyclic

networks. It can also be used to investigate the

performance of multiprocessor systems for mixed networks

where some are periodic and some are not.

 REFERENCES

[1] Aparna Vishwanath, Ramesh Vulavala and Sapna U. Prabhu,”Task

Scheduling in Homogeneous Multiprocessor systems using
Evolutionary Techniques”, IJETAE, vol.4, issue 2, February 2014.

[2] Poonam Panwar, A.K. Lal, Jugminder Singh, “A Genetic Algorithm

based Technique for Efficient Scheduling of Tasks on
Multiprocessor System,” Proceedings of International Conf. on

SocPros 2011, AISC 131, pp.855-861.

[3] Edwin S. H. Hou, Nirwan Ansari and Hong Ren, „ A Genetic
Algorithm for Multiprocessor Scheduling‟, IEEE Transactions on

Parallel and Distributed Systems, Vol. 5, No. 2, Feb 1994.

[4] Yu-Kwong Kwok and Ishfaq Ahmad (1999), “ Static Scheduling
Algorithms for allocating directed task graphs to multiprocessors.”

[5] Yu-Kwong Kwok and Ishfaq Ahmad (1997), “Efficient scheduling of

arbitrary task graphs to multiprocessors using a parallel genetic
algorithm

[6] Yogesh R. Shahare, „ Multiprocessor Task Scheduling Using Hybrid

Genetic Algorithm‟ , ITSI Transactions on Electrical and Electronics
Engineering (ITSI-TEEE), Vol. 1, Issue 4, 2013.

[7] RanjitRajak and C.P. Katti, „ Task Scheduling in Multiprocessor

System using Fork-Joint Method (TSFJ), International Journal of

New Computer Architectures and their Applications (IJNCAA),

2013.

[8] M. Srinivas and L.M. Patnaik, “Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms,” IEEE Trans. Sys., Man and

Cybernetics, vol. 24, no. 4, Apr. 1994, pp. 656-667.

[9] Michael Bohler, Frank Moore, Yi Pan (1999), “ Improved
Multiprocessor Task Scheduling Using Genetic Algorithms” Proc. of

Twelfth International FLAIRS Conference.

[10] E.G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley,
New York, 1976.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, 1979.

[12] J. Ullman, “NP-Complete Scheduling Problems,” J. Comp. Sys. Sci.,

10, 1975, pp.384-393.
[13] J.H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, Mich., 1975.

[14] W. Atmar, “Notes on Simulation of Evolution,” IEEE Trans. Neural
Networks, vol. 5, no. 1, Jan. 1994, pp. 130-147.

[15] Probir Roy, Md. Mejbah U Alam and Nishita Das, (2012),“ Heuristic

based task scheduling in multiprocessor systems with genetic
algorithm by choosing the eligible processor”, International Journal

of Distributed and Parallel Systems (IJDPS) Vol.3, No.4.

[16] L.D. Davis (Ed.), The Handbook of Genetic Algorithms, New York,
Van N. Reinhold, 1991.

[17] D.E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, Mass., 1989.
[18] R. Tanese, “Parallel Genetic Algorithm for a Hypercube,” Proc. Int’l

Conf. on Genetic Algorithms, 1987, pp. 177-183.
[19] “Distributed Genetic Algorithms,” Proc. Int’l Conf. Genetic Alg.,

1989, pp. 434-439.

[20] M. Srinivas and L.M. Patnaik, “Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms,” IEEE Trans. Sys., Man and

Cybernetics, vol. 24, no. 4, Apr. 1994, pp. 656-667.

 [21] A. Srinivasan and J. Anderson, ”Fair scheduling of dynamic task
systems on multiprocessor”, The Journal of Systems, vol. 77, pp. 67-

80, 2005.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100606

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

636

