International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

Task Scheduling in Homogeneous
Multiprocessor Multi-Network Systems using
Evolutionary Techniques

Aparna Vishwanath
Dept. of Electronics Engg.

Mumbai, India

Abstract: Minimizing the total execution time of all tasks in a
given network by scheduling on a multi-processor system is an
important and challenging problem. The classical techniques
of optimization require considerable time to address this
problem. This problem gathers larger proportions as the
number of task networks increases. This work proposes a
genetic algorithm based task scheduling method for a multi-
network multiprocessor system, with and without
interleaving. The proposed method achieves reduced total
processing time in both the cases. The proposed algorithm is
tested by varying number of populations and crossover
probability.

Keywords- Directed Acyclic Graph, Multi- network,
Multiprocessor, Total Processing Time, Edge-zeroing,
Interleaving, Genetic Algorithms.

I INTRODUCTION

The multiprocessor scheduling problem is generally stated
as follows: Given a multiprocessor computing system and a
specific number of tasks to execute, "how does one
efficiently schedule the tasks to make optimal use of the
computing resources "? [1].In general, a deterministic
search of the solution space to identify an optimal solution
to this NP-complete problem is computationally and
temporally exhaustive [2]. The extent of this issue depends
mainly upon the following factors: the number of tasks,
execution time of the tasks, precedence order of the tasks,
number of processors, their uniformity
(homogeneous/heterogeneous) and inter-task
communication.

In multiprocessor systems, factors like load balancing, and
allocation of tasks onto different processors when they are
heterogeneous, may also influence the overall performance.
In this work, all the processors are assumed to be
homogeneous and the load balancing takes into
consideration the utilization factor of each processor.

As task scheduling in multiprocessor systems is a NP-
complete problem, the classical techniques take a large
amount of time to arrive at the optimal solution. Hence, in
our work, we propose genetic algorithm as a technique to
solve the scheduling problem in lesser time compared to
the classical techniques.

In this work, the multiprocessor scheduling problem is
considered as a parallel program represented by an directed

1JERTV 315100606

Ramesh Vulavala
Dept. of Chemical Engg.
FRCRCE, DJSCE,
Mumbai, India

Sapna U. Prabhu
Dept. of Electronics Engg.
FRCRCE,
Mumbai, India

acyclic task graph (DAG). Following are the assumptions
made for the system under consideration;
= Tasks have precedence constraints.
= The period of the tasks, execution time of the
tasks and the communication delay between the
tasks executing on different processors are
available as inputs to the system.
= The tasks in the system are assumed to be periodic
and non-preemptive.
= The processors are assumed to be identical
(homogeneous).

The rest of the paper is organized as follows: Section 2
gives a brief review of related work. Section 3 describes
the preliminaries relevant to the work done. Proposed
algorithm for the task scheduling problem is explained in
Section 4. Section 5 provides simulation results,
performance analysis followed by the conclusions.

Il. RELATED WORK

S. H. Houet. al [3] implemented a genetic algorithm based
task scheduling method for homogeneous multiprocessor
systems using string representations. The strings are
ascending order of tasks arranged with respect to the height
values. An axiom that ‘A schedule satisfying the height-
ordering condition is a legal schedule” has been followed in
their work. The total processing time of the system has
been optimised. The results obtained are compared with list
algorithm and optimal schedule generated for random task
graphs. Kwok et. al. [4] suggested various static
scheduling algorithms for allocating directed task graphs to
multiprocessors. A detailed procedure of every algorithm
with an example has been presented in their work. In our
work we have used heuristics for initial population
generation, as suggested in this paper. Kwok et. al. [5]
proposed an efficient technique for scheduling task graphs
to multiprocessors using parallel genetic algorithm. In their
work the initial population is generated using various
heuristics. Since the precedence order was to be preserved,
a variant of crossover viz. order crossover has been used.
Concept of adaptive probabilities for crossover and
mutation operation have been used. The results have been
recorded for single network scenario with variation in

www.ijert.org 632

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

communication to computation ratio. Yogesh R. Sahare [6]
proposed a hybrid genetic algorithm for task scheduling in
multiprocessor systems. The initial population has been
generated using the earliest start value of each node in the
task graph, a neighbourhood search technique has been
used for selecting parent chromosomes with fitness value
more than 75% of mean population fitness. The reason for
doing so is stated as ‘possibility of finding the best solution
by performing genetic operations on these parents is
higher than that of the rest of the population’. Results have
been recorded for optimised schedule with an effort to
reduce the make-span of the system. The results obtained
have been compared with Genetic Algorithm, Tabu search
technique and simulated annealing. Ranjit Rajak et. al. [7]
proposed a task scheduling method for homogeneous
multiprocessor system using Fork-Joint method. The fork-
joint mechanism has been used at every level of DAG.
Firstly a fork or joint structure is identified, then the task
with maximum fork or joint value is scheduled on to the
same processor as that of the parent task provided all the
precedence constraints are satisfied. The results obtained
have been compared with the heuristic based algorithms. It
has been concluded that their proposed method fetches
lower values of total processing time compared to the
heuristic based algorithms.

I1. PRELIMINARIES

Genetic algorithms (GA) are search algorithms based on
mechanics of natural selection and natural genetics. As
such they represent an intelligent exploitation of a random
search used to solve optimization problems. Although
randomised, GAs are by no means random, instead they
exploit historical information to direct the search into the
region of better performance within the search space. The
basic techniques of GA are designed to simulate processes
in natural systems necessary for evolution especially those
follow the principles first laid down by Charles Darwin of
"survival of the fittest.”

The GA maintains a population of n chromosomes
(solutions) with associated fitness values. Parents are
selected to mate, on the basis of their fitness, producing
offspring via a reproductive plan. Consequently highly it
solutions are given more opportunities to reproduce, so that
offspring inherit characteristics from each parent. As
parents mate and produce offspring, room must be made
for the new arrivals since the population size is kept at a
static size. Individuals in the population die and are replace
by the new solutions, eventually creating a new generation
once all mating opportunities in the old population have
been exhausted. In this way it is hoped that over successive
generations better solutions will thrive while the least fit
solutions die out.

After an initial population is randomly generated, the
algorithm evolves through three operators [5]:

1. Selection (Reproduction)
2. Crossover
3. Mutation (optional)

1JERTV 315100606

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

Selection: Individual solutions are selected through a
fitness-based process, where fitter solutions (as measured
by a fitness function) are typically more likely to be
selected.

Crossover: Crossover is the GA's primary local search
routine. The crossover/reproduction operator computes two
offspring for each parent pair given from the selection
operator. These offspring, after mutation, make up the new
generation. A probability of crossover is predetermined
before the algorithm is started which governs whether each
parent pair is crossed-over or reproduced. Reproduction
results in the offspring pair being exactly equal to the
parent pair. The crossover operation converts the parent
pair to binary notation and swaps bits after a randomly
selected crossover point to form the offspring pair.
Mutation (optional): Mutation of a chromosome is
achieved by simply flipping a randomly selected bit of the
chromosome.

Compared to other existing evolutionary techniques viz.
Ant Colony Optimization, Differential Evolution etc.,
Genetic Algorithms prove to be robust.

In the single network scenario [1], various available
heuristics viz. t-level, b-level, sl-level, alap and random
generation were used as suggested by Kwok and Ahmad
[4] to generate the initial population for Genetic
Algorithms.

t-level: The t-level of a node ‘n’ is the length of the longest
path from an entry node to ‘n’ (excluding ‘n”).

b-level: The b-level of a node ‘n’ is the length of the
longest path from node ‘n’ to an exit node.

sl-level: sl levels are static b-levels computed as (t-level —
b-level).

alap: The ALAP (as late as possible) start-time of a node is
a measure of how far the node’s start time can be delayed
without increasing the schedule length.

Genetic algorithms are best suited to continuous
optimization problems. As the scheduling problem is
discrete in nature with a severe constraint on maintaining
the order sequence of tasks, it requires certain
modifications as suggested by Kwok and Ahmad [5] and
cannot be used in its original form.

V. PROPOSED ALGORITHM

In the system under consideration, since the tasks have
precedence constraints between them, the order of tasks
needs to be maintained as given by the DAG. Thus, the aim
of the work is to minimize the total execution time without
violating the precedence order.

The proposed strategy is to tackle all the networks
simultaneously.

The detailed description of the work done is as below:

Initial population generation:

The initial population for GA is formed by ordering the
tasks along with their parent tasks in the descending order
of their communication delays. The edge zeroing concept
has been used in this algorithm which is a linear clustering
technique.

www.ijert.org 633

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

The edge zeroing procedure is illustrated in the flowchart
below:

Scan through the
communication delay matrices <
of all the networks

simultaneously

\1/ no

First Maximum

communication delay

value found?

Zero the communication delay between the
respective tasks and schedule them on the

same processor

4

Scan the parent node matrix of the respective

network and schedule the parent tasks if any
before the child task

v

Store this task information as string starting

with the parent node and ending the tasks

having maximum delay between them

4

Eliminate the tasks present in the string from

the unscheduled task string (to avoid task

duplication)

A

Iterate till all the tasks in the system are

accounted for in the strings formed

The procedure starts by zeroing the edges having
maximum communication delay between tasks. Edge
zeroing is done by scanning through all the networks in the
system simultaneously, finding the tasks having maximum
communication delayand then zeroing it. However these
can only be executed after completing their preceding
tasks. The record of parent tasks of respective tasks in the
task graphs are maintained as parent node matrices. Hence
the predecessors are stored along with the maximum delay
task in a string. The string is then removed from the multi-
network system, and stored in a list. We then search for
the next maximum delay task in the remaining set of tasks.
This process is iterated till all the tasks become part of
some string. These strings are treated as separate entities in
forming the initial populations of GA. Since these strings
satisfy the precedence order automatically, the normal

1JERTV 315100606

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

operations of GA can be applied to them, without further
modifications. Zeroing the edges dictates that the tasks are
scheduled on the same processor.

The strings are then scheduled onto processors on the basis
of Utilization Factor of the processor. The Utilization
Factor (U;) of a processor is given as,

Ui = e/p
Where,
g; — execution time of the task
p; — period of the task

When the processor utilization exceeds 80% (i.e. 0.8)
scheduling starts from the next processor and so on. When
tasks from the same string are scheduled onto different
processors, the communication delay and idle time are
added to the total processing time (TPT).

TPT (on different processors) =) idle time +
communication delay + execution time

TPT (on same processor) = Y, Execution times
The fitness function (FF) of each member of the population
is then calculated as the reciprocal of the total processing
time(TPT).

FF = 1/(1 + TPT)
In the selection process we ensure that the best sequence is
passed on to the next generation. Other sequences are
selected based on their fitness values. This is followed by
crossover operation.

v

CONSTRUCT\kAG’S
WITH
COMMUNICATION

NEI AV EYECHITIAN

v

CONSTRUCT

NADECNT AIANE

«——

SCAN THE
COMMUNICATION
DELAY MATRIX
(CDM) FOR

v

IS CDM
VALUE =
MAXIMIINM?

ZERO THE
NAYINIIN CRNA

www.ijert.org 634

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

SCHEDULE THE TASK ON
THE SAME PROCESSOR

v

SCAN THE PARENT NODE
MATRIX AND SCHEDULE
PREDECESSORS ON
AVAILABLE PROCESSORS

NO

\l/ YES

GOTO THE NEXT
PROCESSOR

v

CALCULATE PROCESSING
TIME AND TOTAL
PROCESSING TIME

A

CREATE RANDOM INITIAL
POPULATION FOR GA

v

APPLY SELECTION,
CROSSOVER AND
COMPUTE TPT

v

COMPUTE THE
OPTIMISED SCHEDULE

v

Figure 1 : FLOWCHART

As mentioned in Section 3, crossover occurs with a certain
crossover probability called the crossover rate. In this
work, adaptive probability is used as suggested by Srinivas
et. al [8]. Figure 1 gives a better insight of the work done.

The adaptive crossover rate | is defined as follows:
He= ke(fmax — f)/(fmax — favg)

The program developed is scalable and adaptable to the
change in number of tasks and task graphs of a parallel
processing system. The number of processors on the target
multiprocessor system depends upon the utilization factor
of processors, which is evaluated when scheduling takes

1JERTV 315100606

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

place. Therefore, it can be said that the number of
processor in the system depends upon the period and
execution time of tasks. Other parameters that can be easily
modified include the number of iterations of the genetic
algorithm (number of generations) and population size.

V. RESULTS AND CONCLUSIONS

VARIATION IN NUMBER OF POPULATIONS (Np) :
Following are the results obtained for a scenario when
networks are considered independently one at a time with
variation in the size of populations.

7300 4

Np=10 Ng=20 Nt=8 |
Np=20 Ng =20 Nt=9 |:
Np=30 Ng=20 Nt=0 [}

'

7250

e N, S SO O O
: 7 150
é7|nn—
‘;7050—
Emnn—
26950—

6900

6 850

6800 T T T T T T T T T 1
0

Figure 2: Single Network Scenario
Following are the results obtained for a scenario when
networks are considered simultaneously (interleaving) with
variation in size of populations.

5800 q-----r-----c----- e g
Np=10 Ng=20 Nt=g9 |!
Np=20 Ng=20 Nt=2 |
Np=30 Ng=20 Nt=9 [}

5800 ----
5700 -~
5600 - -
5500 |
5 400 |
; 5300 -
_" 5200 -

5100 -

5000 -

4900
[}

Figure 3: Interleaved Networks Scenario

In both cases, an increase in the population size decreases
the average of total processing time, as expected. However,
for a specific population size the proposed interleaving
technique shows considerable improvement in minimizing
the total processing time. This is because of the additional
freedom available with the strings coming from all the
networks of the system.

VARIATION IN CROSSOVER PROBABILITY (uc) :
Following are the results obtained for a scenario when
networks are considered independently one at a time with
variation in crossover probability value.

www.ijert.org 635

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

7400 4

7 300

7200
7 100 o
7000 —--
\:: 6900
% 6800
6700
5 600 |

6500 |

Figure 4: Average Total Processing Time with variation in kc for single
network scenario

Following are the results obtained for a scenario when
networks are considered simultaneously (interleaving) with
variation in the value of crossover probability.

5900 -
5800 |
5700 |
5600 |
5500 |
5 400 |
5300 - -
5200 |
5100 - -

5000 ----

4900 -

4800 T T T T T T T T T 1
[:}

Figure 5: Average Total Processing Time with variation in kc for
interleaved networks

From fig. 5 and 6 it is clearly seen that for higher values of
kc in the single network scenario, we achieve better values
of average processing time whereas for interleaved network
case the lower the kc value the better the result. The reason
possibly is that, the heuristic based initial population in
case of interleaving seems to be very close to the optimal
value requiring only minor adjustments from cross-over.
Whereas in the case of the individual networks, the initial

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

REFERENCES

[1] Aparna Vishwanath, Ramesh Vulavala and Sapna U. Prabhu,”Task
Scheduling in Homogeneous Multiprocessor systems using
Evolutionary Techniques”, IJETAE, vol.4, issue 2, February 2014.

[2] Poonam Panwar, A.K. Lal, Jugminder Singh, “A Genetic Algorithm
based Technique for Efficient Scheduling of Tasks on
Multiprocessor System,” Proceedings of International Conf. on
SocPros 2011, AISC 131, pp.855-861.

[3] Edwin S. H. Hou, Nirwan Ansari and Hong Ren, ° A Genetic
Algorithm for Multiprocessor Scheduling’, IEEE Transactions on
Parallel and Distributed Systems, Vol. 5, No. 2, Feb 1994.

[4] Yu-Kwong Kwok and Ishfag Ahmad (1999), “ Static Scheduling
Algorithms for allocating directed task graphs to multiprocessors.”

[5] Yu-Kwong Kwok and Ishfag Ahmad (1997), “Efficient scheduling of
arbitrary task graphs to multiprocessors using a parallel genetic
algorithm

[6] Yogesh R. Shahare, ¢ Multiprocessor Task Scheduling Using Hybrid
Genetic Algorithm’ , ITSI Transactions on Electrical and Electronics
Engineering (ITSI-TEEE), Vol. 1, Issue 4, 2013.

[7] RanjitRajak and C.P. Katti, * Task Scheduling in Multiprocessor
System using Fork-Joint Method (TSFJ), International Journal of
New Computer Architectures and their Applications (IINCAA),
2013.

[8] M. Srinivas and L.M. Patnaik, “Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms,” IEEE Trans. Sys., Man and
Cybernetics, vol. 24, no. 4, Apr. 1994, pp. 656-667.

[9] Michael Bohler, Frank Moore, Yi Pan (1999), “ Improved
Multiprocessor Task Scheduling Using Genetic Algorithms” Proc. of
Twelfth International FLAIRS Conference.

[10] E.G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley,
New York, 1976.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, 1979.

[12] J. Ullman, “NP-Complete Scheduling Problems,” J. Comp. Sys. Sci.,
10, 1975, pp.384-393.

[13] J.H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, Mich., 1975.

[14] W. Atmar, “Notes on Simulation of Evolution,” IEEE Trans. Neural
Networks, vol. 5, no. 1, Jan. 1994, pp. 130-147.

[15] Probir Roy, Md. Mejbah U Alam and Nishita Das, (2012),” Heuristic
based task scheduling in multiprocessor systems with genetic
algorithm by choosing the eligible processor”, International Journal
of Distributed and Parallel Systems (1JDPS) Vol.3, No.4.

[16] L.D. Davis (Ed.), The Handbook of Genetic Algorithms, New York,
Van N. Reinhold, 1991.

[17] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, Mass., 1989.

[18] R. Tanese, “Parallel Genetic Algorithm for a Hypercube,” Proc. Int’l
Conf. on Genetic Algorithms, 1987, pp. 177-183.

[19] “Distributed Genetic Algorithms,” Proc. Int’l Conf. Genetic Alg.,
1989, pp. 434-439.

[20] M. Srinivas and L.M. Patnaik, “Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms,” IEEE Trans. Sys., Man and
Cybernetics, vol. 24, no. 4, Apr. 1994, pp. 656-667.

[21] A. Srinivasan and J. Anderson, “Fair scheduling of dynamic task
systems on multiprocessor”, The Journal of Systems, vol. 77, pp. 67-

population seems to be far from optimal value depending 80, 2005.
heavily on cross-over to reach the final value.
FUTURE WORK
The same strategy can be easily extended to cyclic
networks. It can also be used to investigate the
performance of multiprocessor systems for mixed networks
where some are periodic and some are not.
IJERTV 315100606 www.ijert.org 636

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

