

Taxonomy of Metrics for Assessing Software Quality

Aman Kumar Sharma Dr. Arvind Kalia Dr. Hardeep Singh

Computer Science Department, Computer Science Department Computer Science Department

Himachal Pradesh University Himachal Pradesh University Guru Nanak Dev University

Shimla, India Shimla, India Amritsar, India

Abstract

As object oriented paradigm is gaining popularity,

software metrics play an important role in ensuring

software quality. In this paper we first introduce

the theoretical concept of object oriented metrics,

specifically of CK metrics suite. Then a case study

of analyzing Java based open source software

using CK metrics to evaluate quality is presented.

The results are interpreted to help the software

developers and researchers in improving the

quality of the software during the development of

the software.

Index Terms— CK suite, Maintainability, Object

Oriented, Software Quality, Testability.

1. Introduction

The general focus of the software industry has

shifted from providing increasingly more

functionality to improving the quality of software.

The ease of use, security, stability and reliability

form some of the factors of quality. Software

quality is becoming an increasingly important area

in software engineering. Software industry deals

with big budgets, many man years, lots of effort

and high dependence shown by customers. It gives

rise to the need of having quality software.

Conformance to user requirements, fitness for use,

conformance to specifications and the value a

customer willingly pays for the software all lead to

quality of software [1]. Nevertheless, it is easier

said than done, as everyone involved in the

software development process is all too well aware,

high quality software is not easy to produce.

Measuring software quality is complex and further,

improving quality of the software product during

its development increases complexity.

Achieving and maintaining quality is difficult

for the fact that it is impossible to maximize all

quality attributes simultaneously [2]. Quality is

―the degree to which a set of inherent

characteristics fulfills requirements‖ [3]. Software

quality is viewed as ―customer value‖ and ―defect

levels‖ by Highsmith [4]. Pfleeger [5] warns

against approaches that focus only on the

measurement of quality of final product.

This study pertains to an empirical analysis of

object oriented (oo) software domain to evaluate

software quality metrics. The traits of object

oriented namely inheritance, coupling and

encapsulation have enabled object oriented in

gaining popularity manifold in recent years.

Doornik [6] has argued that ―object-oriented

programming can bring important benefits when

used in econometric, financial and statistical

computing‖. Chih-Min Lo et. al. [7] have discussed

the application of objects, components in software

development techniques and have further,

highlighted the popularity of object oriented

programming.

Chidamber & Kemerer proposed a CK metrics

suite [8] for the purpose of measuring quality.

There are numerous means of applying these

metrics to practical projects to prove the validity of

the metrics. However, the quality of the product is

established after the product is ready for use or for

sale. The object oriented metrics provide feedback

to software developers and project managers to

develop better software in future. As object

oriented languages are becoming more and more

acceptable to the software world, the requirement

of measuring software quality during its

development is the need of the hour. This study is

aimed at identifying object oriented metrics that

can be utilized to characterize the degree of quality

of object oriented programs. It further, deals with

potential areas to improve software quality during

its development.

The Chidamber Kemerer (CK) metrics suite is

designed to provide a summary of the overall

quality of object oriented software and is available

at the class level. The CK suite quantifies the use of

four main mechanism of object oriented design

namely encapsulation, inheritance, polymorphism

and coupling for which metrics are identified as

Weighted Method Methods per Class (WMC),

Depth of Inheritance Tree (DIT), Number Of

Children (NOC), Coupling Between Object (CBO),

Response For a Class (RFC) and Lack of Cohesion

of Method (LCOM).

Method Methods per Class (WMC): This

measures the complexity of an individual class.

Two different weighting functions are considered.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

One approach is to measure the number of

functions in each class whereas another approach is

to count those functions accessible to other

modules. In this study, the former approach was

adopted i.e. to count all methods of a class.

Depth of Inheritance Tree (DIT): It is defined as

the length of the longest path of inheritance. The

deeper the inheritance tree for a class, the complex

it is to ascertain the behavior due to the interaction

between the inherited features.

Number Of Children (NOC): It is the number of

classes that inherit directly from the current class.

Moderate values for this measure indicate the scope

for reuse. A high value of NOC increases

complexity as it has to provide services to many

classes in various contexts.

Coupling Between Objects (CBO): A class is

coupled to another if it uses the member functions

or variables of the other class. The CBO provides

the number of other modules which are coupled to

the current module. Excessive coupling indicates

weakness of module encapsulation and may inhibit

reuse. Highly coupled classes tend to introduce

more faults caused by inter class activities.

Response For a Class (RFC): It is the number of

methods that can potentially be executed in

response to a message received by an object of that

class. The larger the number of methods that could

potentially respond to a message, the greater is the

complexity of that class.

Lack of Cohesion Of Methods (LCOM): A

count of the number of methods – pairs whose

similarity is zero minus the count of method pairs

whose similarity is not zero. However, the metric

LCOM is not used in this study due to the

ambiguity in the definition of LCOM metric [9]. It

has been identified that the original definition of

LCOM truncates all values below zero and this

truncation limits the metrics ability to fully capture

the lack of cohesion. It is possible that the

truncation of values below zero may reduce the

variability of the metric and limit its usefulness in

explaining productivity or defects [10]. For this

reason, the LCOM metric is omitted from this

study.

Using the results of this study, practitioners,

academicians and designers can identify potential

problem areas and can improve their software

during its development. This paper is organized as

follows: Brief reviews of some of the existing

literature are presented in Section 2. In Section 3,

description about the objective of this study is

given. The research methodology opted for this

research is discussed in Section 4. Section 5

contains results and empirical analysis of object

oriented software metrics used in this study and

finally Section 6 sums up with conclusion and

future scope.

2. Review of literature

An overwhelming majority of researchers have

concentrated on theoretical and empirical

validation of object oriented software metrics.

Dumke [11], Campanai et al. [12] and Sellers [13]

have contributed in area of object oriented design

metrics however, there is inadequate information

on application of proposed metrics and moreover,

experimental validations are missing.

Amjan Shaik et al. [14] in their study have

validated an object oriented software metric CK

suite by using the data collected from projects. It

was concluded in their study that if appropriately

used it could lead to a significant reduction in cost

of the overall implementation and improvement in

quality of the software product.

Chidamber et al. [15] explored the applicability

of CK metrics on practical managerial work such as

productivity and rework effort. The results

suggested that CK metrics were significant

economic variable indicators for the three

commercial object oriented systems used in the

study. Other object oriented metrics are proposed to

complement CK metrics. A metric suite of coupling

measurement was proposed for OOD and was

empirically validated using logistic regression

technique [16]. The study further suggested that

object oriented coupling measurement metrics are

complementary quality indicators to CK object

oriented metrics. The CK set of metrics are

gradually gaining popularity as observed in [17].

A number of studies [18] [19] [8] [15] have used

CK metric suite for analysis of quality of software.

Further, cross validation study of CK metrics also

exist [20] [21].

It is concluded that CK metrics suite is a good

indicator of quality, analysis have been performed

to evaluate quality of the ready to use software.

However, the scope of improving the software

during its development has not been practiced in

these studies.

3. Objectives of the study

The researcher in this study has performed

empirical validation of CK metric suite on different

versions of the software to make the results

generalized. Two software were selected to validate

the experiment with three versions of each software

namely Apache Ivy and Heritrix. Further, in this

study five design metrics were considered for the

analysis. The main objective of this study is to

empirically validate the CK metrics. Also the

results obtained may provide an insight into the

relationship between the software quality factors

and the object oriented design metrics. Thus,

attempting to provide a mechanism to evaluate

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

quality of software during the development process

is made in this study.

4. Scope of the study

In this study the selected software components are

written in java. It is due to the fact that java is

platform independent and is most commonly used

object oriented programming language. Both

Apache Ivy and Heritrix distinct software are

selected for analysis comprising three versions of

each. Apache Ivy is an OSS developed in Java in

the year 2004 as a tool for managing project

dependencies by recording, tracking, resolving and

reporting. Three versions of Apache Ivy used for

measurement and analysis are Apache Ivy 2.2.0,

Apache Ivy 2.1.0. and Apache Ivy 2.0.0. The other

software component Heritrix is also an OSS and

developed using Java language. It is a web crawler

and was developed in 2004. The three versions

selected in this study are Heritrix 3.1.0, Heritrix

1.14.4 and Heritrix 3.0.0.

5. Research methodology

A software metrics tool CKJM was used to

compute the CK suite metrics namely WMC, DIT,

NOC, CBO and RFC for the selected versions of

Apache Ivy and Heritrix. The correlation values

between the various CK suite metrics were

computed by using Public Social Private

Partnership (PSPP) tool. PSPP is an OSS and

statistical software tool. It produces tabular output

in Hyper Text Markup Language, ASCII or in post

script format. The study used bi-variate correlation

with values ranging between -1 to +1. A positive

correlation value denotes that the metrics are

linearly correlated to each other. A positive value

of 1 depicts that with every increase in one of the

metric, increases the value of another metric too.

Correlation values of less than -0.5 or more than

+0.5 indicate a strong correlation between the

metrics negatively or positively respectively.

Whereas a zero correlation value means that the

metrics are not related to each other.

6. Analysis of results

The CKJM tool computes the values of WMC,

DIT, NOC, CBO and RFC for the software. The

correlation results of the software for the three

evaluated versions of Apache Ivy are represented

below:

Table 1. Correlation Values of Apache Ivy 2.0.0

for CK Metrics

 NOC DIT RFC CBO WMC

LOC 0.0 0.02 0.94 0.85 0.81

NOC 0.02 0.02 -0.01 0.05

DIT 0.04 -0.01 0.06

RFC 0.94 0.75

CBO 0.53

Table 2. Correlation Values of Apache Ivy 2.1.0

for CK Metrics
 NOC DIT RFC CBO WMC

LOC 0.04 0.04 0.78 0.54 0.80

NOC -0.01 0.11 -0.02 0.14

DIT -0.02 -0.02 -0.06

RFC 0.72 0.89

CBO 0.58

Table 3. Correlation Values of Apache Ivy 2.2.0

for CK Metrics
 NOC DIT RFC CBO WMC

LOC 0.0 0.01 0.92 0.85 0.80

NOC 0.03 0.02 -0.01 0.04

DIT 0.04 -0.01 0.04

RFC 0.95 0.74

CBO 0.55

Table 1, Table 2 and Table 3 show correlation

values between different CK metrics of Apache Ivy

versions. For instance in Table 1, the value of 0.81

depicts the correlation between WMC and LOC.

The same analogy is applied for the remaining

values shown in Table 1, Table 2 and Table 3.

Table 4. Correlation Values of Heritrix 3.0.0 for

CK Metrics
 NOC DIT RFC CBO WMC

LOC -0.03 -0.13 0.86 0.29 0.94

NOC -0.09 0.0 -0.06 0.0

DIT -0.07 -0.06 -0.12

RFC 0.31 0.89

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

CBO 0.27

Table 5. Correlation Values of Heritrix 1.14.4

for CK Metrics
 NOC DIT RFC CBO WMC

LOC -0.01 -0.10 0.90 0.28 0.94

NOC 0.01 0.01 -0.04 0.0

DIT -0.13 -0.03 -0.15

RFC 0.33 0.91

CBO 0.23

Table 6. Correlation Values of Heritrix 3.1.0 for

CK Metrics
 NOC DIT RFC CBO WMC

LOC -0.02 -0.09 0.86 0.27 0.94

NOC -0.10 0.01 -0.06 0.01

DIT -0.02 -0.02 -0.07

RFC 0.28 0.90

CBO 0.25

The correlation values of Heritrix 3.0.0, Heritrix

1.14.4 and Heritrix 3.1.0 are listed in Table 4,

Table 5 and Table 6 respectively. A value of -0.03

in Table 4 means that the correlation between NOC

and LOC is negative 0.03, hence negligible

correlation. The rest of the correlation values are

interpreted on the same analogy.

The results have a similar trend across all the three

versions of Apache Ivy and Heritrix as depicted in

Table 1, Table 2 and Table 3 for Apache Ivy and

Table 4, Table 5 and Table 6 for Heritrix.

Moreover, the correlation values have similar

inclination in Apache Ivy and Heritrix except for

correlation between CBO - LOC, and CBO - RFC.

It is evident from the result that RFC – LOC, WMC

– LOC and WMC – RFC are very strongly

correlated to each other. Moderate correlation

exists between WMC – CBO. A very weak or

negligible correlation exist between NOC – LOC,

DIT – NOC, DIT – LOC, RFC – NOC, RFC – DIT,

CBO – NOC, CBO – DIT, WMC – NOC and

WMC – DIT for all the versions of Apache Ivy and

Heritrix.

The study projects that classes consisting of few

lines of code are designed with long hierarchy. This

results in value of LOC being consistent with

fluctuating values of DIT and NOC. Thus,

correlation value between LOC and (DIT and

NOC) represents a negligible correlation. Further,

there seems to be no relation between the breadth

and depth for the classes. Higher value of DIT has

no impact on NOC and vice versa, as the

correlation value among DIT and NOC is

insignificant. Though the factors to evaluate

reusability are NOC and DIT, the study has

revealed the fact the classes are not extensively

reused, hence the quality has been adversely

affected. With the increase in the WMC correlation

value, there is potential of increased method calls

hence, increased RFC. Therefore, in the study a

very high correlation exists between RFC and

WMC for all the versions of all the software

applied in the study. To measure maintainability

WMC and CBO metrics are used. In the study it is

found that Apache Ivy has a strong correlation

between WMC and CBO which implies that

Apache Ivy is maintainable software. On the

contrary, for the different versions of Heritrix the

correlation value between WMC and CBO is

insignificant. Thus, maintainability quality factor

for Heritrix is low. The same reasoning is applied

on the correlation involving CBO and RFC. In this

instance too, the correlation value for various

Apache Ivy versions is very high however, for

Heritrix versions the correlation value was weak.

This signifies that Apache Ivy is more testable and

understandable as CBO and RFC are the metrics to

evaluate testability and understandability quality

factors. Weak correlation value between WMC and

DIT is due to the fact that classes with larger

number of methods may or may not have any

impact on DIT i.e. more methods might be spread

breadth wise or depth wise. The same analogy is

applied on the correlation linking WMC and NOC.

7. Conclusion and Future Scope

CK metrics was validated using Apache Ivy and

Heritrix with three versions of each. The results

suggest that WMC relation with RFC and CBO is a

good indicator for quality evaluation. From the

observations of this study, it can be evaluated how

to use CK metrics more efficiently to evaluate

quality of the software in its development stage. In

future, validation of CK metrics suite can be

performed on several object oriented languages to

strengthen the view point of this study.

8. References

[1] R. A. Khan, K. Mustafa and S. I. Ahson, Software

Quality: Concepts and Practices 1st ed., India:

Narosa Publishing House, 2008, pp. 7-18.

[2] Maria Haigh, ―Software quality, non-functional

software requirements and IT-business alignment,‖

Software Quality Journal, Springer, vol. 18, pp.

361-385, 2010.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

[3] ISO /IEC 9000:2000, ―Quality Management

Systems- Fundamentals and Vocabulary‖, Geneva,

Switzerland: International Organization for

Standardization.

[4] J. Highsmith, Agile software development

ecosystems, Addison Wesley Professional, 2002.

[5] S. L. Pfleeger, Software Engineering: Theory and

Practice, 2nd ed. New Jersey: Prentice Hall, 2001.

[6] Jurgen A. Doornik, Object Oriented Programming

in Econometrics and Statistics Using OX: A

Comparison with C++, Java and C#, Springer,

2002.

[7] Chih-Min Lo and Sun-Jen H Jang, ―Applied Object

Oriented Programming Technology to ICT

Applications Development‖, in 2010 Proc. SICE

Annual Conference, August 2010, pp 3336-3339.

[8] S.R. Chidamber and C.F. Kemerer, ―A metrics suite

for object oriented design‖, IEEE Transactions on

Software Engineering, vol. 20 no. 6, pp 476-493,

1994.

[9] V. Basili, L. Briand and W. Melo, ―A validation of

object oriented design metrics as quality indicators‖,

IEEE Transactions on Software Engineering, vol.

22, pp. 751-761, 1996.

[10] Ramanath Subramanyam and M.S. Krishnan,

―Empirical analysis of CK metrics for object

oriented design complexity: implications for

software defects‖, IEEE Transactions on Software

Engineering, vol. 29 no. 4, 2003.

[11] R. Reiner Dumke, ―A measurement framework for

object oriented software development‖, Annals of

Software Engineering, vol. 1, 1995.

[12] M. Campanai and P. Nesi, ―Supporting Object

Oriented Design with Metrics‖, in Proc. of Tools 94,

Europe, France 1994.

[13] B. Henderson Sellers, ―Identifying Internal and

External Characteristics of Classes likely to be

useful as Structural Complexity Metrics‖, in 1994

Proc. International Conference on Object Oriented

Information Systems (OOIS 94), London, Springer,

Verlag pp. 227-230, 1994.

[14] Amjan Shaik, Dr. C. R. K. Reddy and Dr. A.

Damodaran, ―Statistical analysis for object oriented

design software security metrics‖, International

Journal of Engineering Science & Technology, vol.

2 no. 5, pp. 1136-1142, 2010.

[15] S. R. Chidamber, D. P. Darcy and C. F. Kemerer,

―Managerial use of metrics for object oriented

software: An exploratory analysis‖, IEEE

Transactions on Software Engineering, vol. 24 no.

8, pp. 629-639, 1998.

[16] L. Briand, P. Devanbu and W. Melo, ―An

investigation into coupling measures for C++‖,

Technical Report ISERN -96-08, ISERN 1996.

[17] Amandeep Kaur, Satwinder Singh, K.S. Kahlon and

Parvinder S. Sandhu, ―Empirical analysis of CK &

MOOD metric suit‖, International Journal of

Innovation, Management and Technology, vol. 1 no.

5, Dec 2010.

[18] Kuljit Kaur Chahal and Hardeep Singh, ―Metrics to

study symptoms of bad software designs‖, ACM

SIGSOFT Software Engineering, vol. 34 no. 1, pp.

1-4, ACM New York 2009.

[19] Giulio Concas, Michele Marchesi, Alessandro

Murgia and Roberto Tonelli, ―An empirical study of

social networks metrics in object oriented software‖,

Advances in Software Engineering, 2010.

[20] K. El-Emam, S. Benlarbi, N. Goel and S. Rai, ―A

Validation of Object Oriented Metrics‖, NRC/ERB

1063, National Research Council of Canada, 1999.

[21] Aman Kumar Sharma, Arvind Kalia and Hardeep

Singh, ―Empirical analysis of object oriented quality

suites‖, International Journal of Engineering and

Advanced Technology, vol. 1 no. 4, 2012.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org

