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Abstract – The basic aim of Multi Base Number 

System is to reduce the algebraic complexity and 

to enhance the speed of the existing algorithms. 

Both DBNS and TBNS have significant roles in 

achieving this. In this paper, we have introduced 

a few algorithms to find Triple Base Number 

System and Triple Base Chain. This in turn leads 

to the representation of any real number in 

TBNS. Introduction of Single Digit Triple Base 

Number System is another aspect of study in this 

paper. Analysis has been done in details in terms 

of time complexity, which prove the novelty of 

the algorithms.The variation of error with 

increase in the value of the integer is calculated. 

Efficient implementation of these algorithms will 

result in the design of an efficient architecture of 

a multiplier unit.The proposed algorithms are 

supposed to be efficient and can be widely used in 

the field of Digital Signal Processing (DSP) & 

Elliptic Curve Cryptography (ECC). 

Keywords – DBNS, TBNS, SDDBNS, SDTBNS, 

Real number representation, Error, DSP and 

ECC 

I. INTRODUCTION 

Low performance ALUs never look upon the 

problem of time complexity. High performance, 

flexibility, space complexity and low power 

consumptions are the most important issues in the 

current signal processing architectures. The signal 

processing algorithms face many challenges in real-

time applications because of their high 

computational complexity. Therefore, the major 

issues have been the enhancement of speed of the 

arithmetic units.In general we can conclude that if 

the computational complexity of operations 

performed by an ALU, multiplications and additions 

in particular, can be reduced, it results in the design 

of a high performance ALU.  

Representation of an integer in TBNS improved the 

performance of the ALU by reducing the complex 

computations. Now if we can express any real 

number in TBNS with a minimal error, it will be a 

great boon for the industry that deals with DSP & 

ECC. In this paper, we introduce a few algorithmsto 

convert any real numberinto Triple Base Number 

System. The basic principle of the first algorithm is 

that every integer is divided by 30 (expressed as 

2
1
3

1
5

1
). We have designed another algorithm to 

convert any real number into Single Digit Triple 

Base Number System (SDTBNS). This is not the 

only algorithm to represent a floating point number 

in TBNS. We have approached with a more general 

algorithm employing the concept of place value. 

 

II. EXISTING ALGORITHMS 

Algebraic complexity of different Algorithms in 

Signal Processing and Cryptography leads to a 

major problem and Researchers are trying to 

develop new Algorithms to solve these problems. To 

enhance the speed of the existing Algorithms, 

different number systems have been found for point 

multiplication in elliptic curve cryptography (ECC) 

&coefficient multiplication in digital signal 

processing (DSP) mainly for digital filter design. 

Among the different number system, DBNS, DBC, 

HBTJSF, w-NAF are efficient. Recently, to increase 

the speed again, TBNS, SDTBNS have been 

developed. There are different method to convert 

any integer or fraction into TBNS and hence 

SDTBNS. 

It all started with a number system which employed 

bases as 2 and 3, allowing as digits only 0, 1, and 

requiring O[log N] [1] nonzero digits, known as  the 

„Double Base Number System (DBNS)‟. Any 

integer can be represented in DBNS. 

The general form of representation is: 

 

Double base chains have been obtained with a 

greedy approach [8], relying on the search of the 

closest {2, 3} – integer to a given number. This 

approach tends to increase the length of the chain. 

Then tree based approach was introduced which is 

very well known to us now. The tree based approach 

[2] has been generalized in order to obtain other 

kinds of double base chains. Even though DBNS 
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schemes exhibit reasonably good performance for 8 

bit multiplication, they are not efficient for higher 

bits and is highly redundant. 

For further enhancement of the performance of 

arithmetic operations and to reduce the hardware 

complexities, a new concept called Triple Based 

Number Systems (TBNS) [11]. It was   introduced 

for performance       enhancement of the multiplier 

of the digital signal processors. We use 2, 3 and 5 to 

represent any integer in TBNS. Efficiency of this 

number system has been dealt already with in details 

and a comparison between TBNS and DBNS clearly 

indicate the advantages of the former in terms of 

speed, hardware complexity and power dissipation. 

Different algorithms are proposed. Algorithms like 

Joint Binary-Ternary Representation System 

(JBTRS), Triple Base Hybrid Joint Sparse Form 

(JSF) and Joint Double Base Chain (JDBC) [9] are 

important in terms of complexity, efficiency.  From 

different analysis it is clear that JTBNS is only 

comparable with HBTNS, but HBTNS requires a 

pre computation look-up-table. Also the number of 

doublers required for HBTNS is more than that 

required for JTBNS at the cost of adders. But the 

complexity to design a doubler is more than to 

design an adder. Hence JTBNS is advantageous 

from all respect. 

III. PROPOSED ALGORITHMS 

Let us discus about the algorithms to represent any 

integer in TBNS. 

--------------------------------------------------------------- 

Algorithm I 

--------------------------------------------------------------- 

The algorithm is shown in the following steps -  

1. Let us consider any integer „n‟. 

2. We then divide the number by 30. 

3. Dividing any number by 30 means that it is 

either divisible by 30 or after dividing the 

number by 30 gives a quotient and a remainder 

that lies in the range of 1-29. 

4. Out of the remainders in the range, we can 

easily represent 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 

16, 18, 20, 24, 25 and 27 using 2, 3, and 5. 

The remaining remainders that cannot be 

represented by 2, 3, and 5 are 7, 11, 13, 14, 17, 

19, 21, 22, 23, 26, 28, and 29. 

5. If 7, 11, 13 can be represented in TBNS then we 

can easily represent 14, 21, 22, 26, and 28 in 

TBNS since they can be obtained by 

multiplying 2
1 

or 2
2 

or 3
1
.The remaining 

numbers (17, 19, 23, and 29) has to be 

represented in the same way. 

6. To represent the remaining numbers in TBNS, 

we first check whether the remainder is 

divisible by 15, 10, 6, 5, 3, and 2 in descending 

order. That means that the divisibility of the 

remainder is first checked with 15, then 10 and 

this particular order is followed. Divisibility by 

these numbers signifies that the remainder can 

easily be represented using 2, 3, and 5. The 

reason behind checking the divisibility of 

remainders by 15, 10, 6, 5, 3, and 2 is shown in 

the table 1. 

 

Table 1 

Remainders represented using bases 2, 3 and 5 

 

Integers Indices 

 2 (i) 3 (j) 5 (k) 

1 0                 0 0 

2 1 0 0 

3 0 1 0 

4 2 0 0 

5 0 0 1 

6 1 1 0 

8 3 0 0 

9 0 2 0 

10 1 0 1 

12 2 1 0 

15 0 1 1 

16 4 0 0 

18 1 2 0 

20 2 0 1 

24 3 1 0 

27 0 3 0 

 

If the remainder is not divisible by any of the 

following, it is checked whether the remainder is 

greater than 15 or not. If yes it is divided by 15 & 

again the remainder is checked using the same 

procedure i.e. from step 4.  

If the remainder >=10 &<15, it is divided by 10 & 

the divisibility of the remainder is checked and same 

procedure is repeated. 

If the remainder >=6 &<10, it is divided by 6 & the 

divisibility of the remainder is checked and same 

procedure is repeated. 

If the remainder is not divisible by any of the 

following, it is checked whether the remainder is 

greater than 15 or not. If yes it is divided by 15 & 

again the remainder is checked using the same 

procedure i.e. from step 4. 

The same method is applied by following the 

specific order to represent the remainder in TBNS. 
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7. Now let us consider the quotient. The quotient 

may be greater than 30 or less than 30. If the 

quotient is greater than 30, repeat from step 2. 

Else repeat from step 4. The quotient is treated 

in the same manner as the remainder. 

8. The process is terminated when either the 

remainder or the quotient is zero and thus we 

get the desired result in TBNS.Thus using this 

algorithm, we can represent any integer by the 

bases 2, 3, and 5 in an efficient manner. 

--------------------------------------------------------------- 

The algorithm is illustrated with an example. Let us 

take a number as 89. Then we follow these steps – 

1. The number (89) is divided by 30. 

2. Since the number (89) is not divisible by 30, 

after division, the quotient is 2 & the remainder 

is 29. 

3. Since the remainder is not divisible by 10, 6, 5, 

3, 2; we divide 29 by 15. The quotient is 1 & 

the remainder is 14. 

4. Again 14 is divisible by 2. The quotient is 7. 

Finally 7 is again divided by 3, resulting the 

value of the quotient as 2 & remainder as 1. 

5. Thus we can represent 89 in the following 

manner -  

89 = (2
1
3

0
5

0 
* 2

1
3

1
5

1
) + (2

0
3

1
5

1 
+ 2

1
3

0
5

0 
*  

       (2
1
3

0
5

0
* 2

0
3

1
5

0 
+2

0
3

0
5

0
)) 

       = 2
2
3

1
5

1 
+ (2

0
3

1
5

1 
+ 2

1
3

0
5

0 
* (2

1
3

1
5

0 
+ 2

0
3

0
5

0
)) 

--------------------------------------------------------------- 

Algorithm II 

---------------------------------------------------------------

Algorithm II is nothing but a modified version of 

Algorithm I. To reduce the complexity of the 

algorithm, we need to modify the algorithm using an 

approximation. The approximation is used while 

representing the remainders. Instead of dividing by 

15, 10, 6, 5, 3, and 2; we represent the remainders 

that cannot be represented using 2, 3, and 5 using 

Single Digit TBNS. Here the algorithm is discussed 

in details. 

The steps from 1-5 are repeated as in Algorithm I. 

The modifications are:- 

Instead of checking the divisibility of the 

remainders, we introduce & apply the concept of 

SDTBNS. The remainders that cannot be expressed 

in terms of 2, 3, and 5; i.e. 7, 11, 13, 17 etc. are 

expressed in the form of 2
i
3

j
5

k
. 

--------------------------------------------------------------- 

For example, 7 can be expressed using SDTBNS in 

the following way –  

7 = 2
-35 

*3
-45 

*5
47

, where the mod error is 0.000228. 

Similarly the other remainders can also be 

represented in SDTBNS as shown in the Table 2 

below. The table gives an idea about the errors in 

representation of an integer in SDTBNS. The values 

of i, j, and k are assumed to be optimal both in 

accordance with accuracy and data bus width. 

Again the steps 7 and 8 of Algorithm III are 

repeated for the termination procedure. Thus any 

integer is expressed using the TBNS chain and the 

SDTBNS technique, which is assumed to be 

effective in the context of Signal Processing and 

Elliptic Curve Cryptography.

Table 2 

SDTBNS representation of the prime numbers within the range 30 and the corresponding errors 

 

 

Remainder 

 

Power of 2  

(i) 

 

Power of 3 (j) 

 

Power of 5 

(k) 

 

Error 

(Mod) 

7 -35 -45 47 0.000228 

11 49 87 -79 0.0001 

13 -80 3 34 0.000027 

17 52 2 -22 0.000519 

19 -58 -12 35 0.00007 

23 -53 -56 63 0.000127 

29 58 28 -42 0.00022 

Let us compare between the third and the fourth 

algorithm. We will work out with the same example 

i.e. 89, which was represented using Algorithm I. 

1. The number (89) is divided by 30 

2. Since the number (89) is not divisible by 30, 

after division, the quotient is 2 & the remainder 

is 29. 

3. 29 can be expressed by SDTBNS in the form of 

:- 29 = 2
58 

* 3
28 

* 5
-42 

The error in this case is 0.00022.
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4. Thus we can represent 89 in the following 

manner -  

89 = (2
1
3

0
5

0 
* 2

1
3

1
5

1
) + 2

58 
3

28
5

-42 
 

     = 2
2
3

1
5

1 
+ 2

58 
3

28
5

-42
 

We can easily differentiate between Algorithm I & 

Algorithm II. In case of the first algorithm, we can 

represent any integer in TBNS without any error but 

the complexity increases as the integer value 

increases. It is much more generalized. On the 

contrary, in the case of the second algorithm we are 

representing an integer with a reduced complexity 

but by introducing some errors in the representation. 

The number of terms in the expression is also 

reduced. 

To give an idea about the variation of error with the 

increase in the value of the integer & the power of 

30, we have plot a graph to illustrate the change. 

 

Figure 1.  Plot of powers of 30 against the calculated error 

Let us now discuss some important points regarding 

the algorithms that are used to represent any integer 

in TBNS. 

1. Maximum number that can be represented using 

this algorithm up to 3
rd

 power of 30 is 

(29*30
3 
+ 29*30

2 
+ 29*30 + 29 = 80999) 

Percentage error = 0.00075 

2. For any integer, that is to be represented using 

this algorithm, the maximum percentage error is 

0.00305. 

From table 2, we find that the maximum error is 

occurring while representing 17 in SDTBNS. And as 

we know that error always gets cumulated in this 

algorithm, so maximum error occurs when the 

number is 474827, which can be written as – 

(17*30
3 
+ 17*30

2 
+ 17*30 + 17) 

Error obtained in this case is 14.496, which is 

obtained from [(0.000519*30
3
)+(0.000519*30

2
) + 

(0.000519 * 30) + 0.000519] 

To understand the above points, we illustrate them 

by taking the help of two examples –  

i. 14854 = (16*30+15) * 30 + 4 

= 16*30
2 
+ 15*30 + 4 

 = 2
4
. (2.3.5)

2 
+ (3.5) * (2.3.5) + 2

2 

 
= 2

6
.3

2
.5

2 
+ 2.3

2
.5

2 
+ 2

2
.3

0
.5

0 

Percentage Error = 0 

ii. 15719 = ((17*30+13) * 30) + 29 

= (2
52

3
2
5

-22
) (2

1
3

1
5

1
)

2 
+ (2

-80
3

3
5

34
) (2

1
3

1
5

1
) 

+ (2
58

.3
28

.5
-42

) 

= 2
54

.3
4
.5

-20
+2

-79
.3

4
.5

35
+2

58
.3

28
.5

-42
 

Percentage Error = 0.00297% 

power 

0

power 

1

power 

2

power 

3

Error for 7 0.000228 0.00684 0.02052 0.6156

Error for 11 0.000103 0.00309 0.00927 0.2781

Error for 13 2.7E-05 0.00081 0.0243 0.729

Error for 17 0.000519 0.01557 0.4671 14.013

Error for 19 7.6E-05 0.00228 0.0684 2.052

Error for 23 0.000127 0.00381 0.1143 3.429

Error for 29 0.00022 0.0066 0.198 5.94

0
1
2
3
4
5
6
7
8
9
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11
12
13
14
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E
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 f
o

r 
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f 

3
0
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Error for 7

Error for 11

Error for 13

Error for 17

Error for 19

Error for 23

Error for 29
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3. These algorithms can be used to represent any 

real numbers. It is discussed in details in the 

next portion. 

4. In case of Algorithm III, as the value of the 

integer increases, the complexity also increases, 

which may lead to increase in redundancy. 

For example,  

a. 2357 = [((2
1
3

0
5

0 
* 2

1
3

1
5

1
) + 2

1
3

2
5

0
) * 2

1
3

1
5

1
] + 

(2
0
3

1
5

1 
+ 2

1
3

0
5

0
) = (2

3
3

2
5

2 
+ 2

2
3

3
5

1
) + (2

0
3

1
5

1
 + 

2
1
3

0
5

0
) 

b. 1573 = 52*30 + 13 = (30+22)*30 + 13  

= (2
1
3

1
5

1 
+ 2

0
3

1
5

1 
+ 2

1
3

1
5

0 
+ 2

0
3

0
5

0
) * (2

1
3

1
5

1
) + 

(2
1
3

0
5

1
+2

0
3

1
5

0
) 

= 2
2
3

2
5

2 
+ 2

1
3

2
5

2 
+ 2

2
3

2
5

1 
+ 2

1
3

1
5

1 
+ 2

1
3

0
5

1 
+ 

2
0
3

1
5

0 

Now the algorithms shown above in the paper has 

applications only while representing an integer. But 

the real deal is to represent any real number in 

DBNS or TBNS. In this paper we can use the above 

four algorithms to represent any real number in 

DBNS or TBNS. Again we can use the same 

approach of SDDBNS or SDTBNS to represent the 

same real number in DBNS or TBNS. Let us discuss 

the algorithms in detail and then analyse them.
 

We have discussed the algorithms that can be used 

to represent any integer to DBNS and then TBNS. 

Now let us explain the algorithms to represent any 

real number in DBNS or TBNS, which is the most 

interesting topic of this paper. 

--------------------------------------------------------------- 

Algorithm III 

--------------------------------------------------------------- 

The algorithm is explained in the following steps -  

1. Let us consider any real numberas „n‟. 

2. We then separate the number into integer 

portion and decimal portion. 

3. The integer part is expressed in TBNS using 

any algorithm that are described in details or 

any other algorithm like tree based approach in 

case of DBNS. 

4. Now to represent the decimal part in TBNS, we 

first convert the decimal part in binary form. 

We need to take some approximation if the 

representation of the decimal part in binary 

reaches a recursive loop. In that case we take up 

to 8 digits.  

5. Since we know the place values of each „0‟ and 

„1‟ we can use them to represent the decimal 

part in TBNS. 

6. We add the place values of each „1‟ and find the 

result. For example, the „1‟ at the 8
th

 digit will 

have a place value as 2
(8-1)

. 

7. The sum obtained is represented using any of 

the four algorithms   that are shown above or 

any other algorithm to express it in TBNS. 

8. 2
-8

 is then multiplied with the obtained TBNS 

form. 

--------------------------------------------------------------- 

Thus we get our desired result and can easily 

represent any real number in TBNS form without 

introducing large amount of error. 

Let us take an example to illustrate the above stated 

algorithm. 

1. Let us take a real number as 6.675. 

2. Now the integer part is 6 and the decimal part is 

0.675. 

3. 6 can be easily represented using any algorithm 

between I and II or by using any other 

algorithm that are already being proposed and 

used. 

4. Now 0.675 is represented in binary form as 

(10101110)2. 

5. We represent the above binary form as  

2
-8 

* (2
1
+2

2
+2

3
+2

5
+2

7
)   = 2

-8
 * 174. 

6. 174 can be expressed in TBNS.  The obtained 

result is multiplied with 2
-8

. 

Error will vary according to the algorithm that is 

used to represent the number in TBNS. Instead of 

using the above algorithm to represent any real 

number in TBNS, we can approach with the concept 

of Single Digit TBNS. Let us now discuss them in 

details. 

--------------------------------------------------------------- 

Algorithm IV 

--------------------------------------------------------------- 

Input: Any real number „n‟ 

Output: SDTBNS representation of the number 

1. int i,j,k,s1=0,s2=0,s3=0; 

2. float e,e1=0.005,n1; 

3. for k=-100 to k<=100 do /* outer loop */ 

4. for j=-100 to j<=100 do /* inner loop 2 */ 

5. fori=-100 to i<=100 do /* inner loop 1 */ 

6. n1=2
i
* 3

j
* 5

k
; 

7. e = (n-n1)/n; 

8. if e<0 then 

e=-(e); 

9. if e<e1 then  

e1=e;s1=i;s2=j;s3=k; 

10. end inner loop 1 
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11. end inner loop 2 

12. end outer loop 

13. print the powers of 2, 3 and 5 and the error. 

--------------------------------------------------------------- 

The above algorithm can only be implemented using 

any programming language like C or Java. 

Let us take the same example to compare between 

SDDBNS and SDTBNS –  

1. Let the number be 5.67. 

2. After computing the program we get the result 

as 5.67 = 2
-37

 * 3
-41

 * 5
45

 

3. The error is 0.000033. 

After discussing about all the algorithms in details, 

we present two tables that can help us a lot in 

distinguishing the different algorithms and a 

designer can choose the best algorithm required for 

his purpose. The tables are shown below. We have 

used the same integer (1077) & real number 

(1077.36523)for representation in either DBNS or 

TBNS so that we can compare by using some 

parameters.

Table 3 

Comparison between the different algorithms with respect to various parameters  

 

Algorithms Number 

of 

Elements 

in the 

Chain 

Maximum/ 

MinimumPower 

of 2 

Maximum/ 

MinimumPower 

of 3 

Maximum/ 

MinimumPower 

of 5 

Highest 

(or 

Lowest) 

Power 

Percentage 

Error 

1 5 2 2 2 2 0 

2 3 2 3 2 3 0 

3 1 32 14 -19 32 0.00268 

4 1 69 39 -52 69 0.001046 

5 5 -8 3 2 -8 0.00018 

6 7 -8 2 2 -8 0.00018 

For both the tables drawn, algorithm 1 denotes the 

algorithm to represent any integer in TBNS as 

described in „algorithm I‟, algorithm 2 resembles 

„algorithm II‟, algorithms 3 approach SDTBNS to 

represent any integer, algorithms 4 approach 

SDTBNS to represent any real number, algorithms 5 

and algorithm 6 use „algorithm III‟ to represent the 

real number TBNS, where the integer is represented 

by using„algorithm II‟, „algorithm I‟ respectively.

 

Table 4 

Comparative study of the proposed Algorithms 

 

Algorithms 

 

Applicable 

to 

 

Computational 

complexity 

Hardware requirement  

Error 

 

Speed of 

computation Requirement 

of adders & 

multipliers 

Capacity of 

the adders & 

multipliers 

1 Integer Moderate High Low Errorless Moderate 

2 Integer Moderate Low High Moderate Fast 

3 Integer High Least High Moderate Slow 

4 Any Real 

number 

High Least High Moderate Slow 

5 Any Real 

number 

High Low High Moderate Slow 

6 Any Real 

number 

High Moderate Moderate Low Moderate 
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IV. APPLICATIONS 

Digital signal processing (DSP) is the technology 

that is omnipresent in almost every engineering 

discipline. A typical processor devotes a 

considerable amount of processing time in 

performing arithmetic operations, particularly 

multiplication operations. Multiplication is one of 

the basic arithmetic operations and it requires 

substantially more hardware resources and 

processing time than addition and subtraction. In 

fact, 8.72% of all the instruction in typical 

processing units is multiplication. The core 

computing process is always a multiplication 

routine; therefore, DSP engineers are constantly 

looking for new algorithms and hardware to 

implement them. Finite impulse response (FIR) 

filters, discrete cosine transform (DCT), and discrete 

Fourier transform (DFT), for instance, are central 

operations in high-throughput systems and they use 

a huge amount of such operations. Their 

optimization widely impacts the performance of the 

global system that uses them.Application of this 

number systems in digital signal processing (DSP) 

has been explored. Multiplier based on TBNS is one 

of the fast and low power multiplier. 

 For multiplication algorithms performed in DSP 

applications latency and throughput are the two 

major concerns from delay perspective. In TBNS, 

the calculations of the exponential power of the 

different prime bases are necessary. Fewer gates will 

be required. Less energy, less hardware will be 

needed for implementation. In this paper, TBNS is 

applied to the binary number system and is used to 

develop digital multiplier architecture. TBNS is 

much more efficient in the multiplication of large 

numbers as it reduces the multiplication of two large 

numbers to that of two smaller ones. The algorithms 

can be implemented in the design of a low power 

high speed algorithms for arithmetic logic units 

using TBNS. Employing this technique in the 

computation algorithms of the coprocessor will 

reduce the complexity, execution time, area, power. 

The TBNS technique has its maximum application 

in Fast Fourier Transform, where complex and large 

multiplications are required.  In the case of the 

radix-2 DIT-FFT algorithm, the butterfly takes two 

inputs (X0, X1) and gives two outputs (Y0, Y1) by the 

formula -   

Y0=X0+X1ω
к 

Y1=X0-X1ω
к
where ω= twiddle factor.

 

As this is basically a complex multiplication and 

addition so, by this proposed algorithm, FFT 

calculation can be done faster. Same is applicable in 

the case of DIF-FFT algorithm. And by decimation 

more point DFT can be calculated efficiently.  

We have shown a block diagram to explain it by 

using Triple Base Number System (TBNS), 

employing the bases as 2, 3, and 5. Similar 

architecture can be obtained in case of DBNS.
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Figure 2.  Block Diagram of a Multiplier Unit

One of the most important application of multi base 

number system lies in the field of cryptography. 

 

Cryptography is study of mathematical techniques 

related to aspects of information security such as 

confidentiality, data integrity, entity authentication, 

and data origin authentication. Triple Base Number 

System (TBNS) has found application in 

cryptography especially in Elliptic Curve 

Cryptography (ECC). 

Scalar multiplication is the bottleneck operationof 

the elliptic curve cryptography. It is to computethe 

result - Q = rSwhen S and Q are points on the 

elliptic curve and ris a positive integer. The 

computation time of theoperation strongly depends 

on the representationof „r‟.„r‟ can be represented 

using the various algorithms in DBNS and TBNS. 

In ECC, signature verification is one of the most 

important step and this mainly requires a double-

scalar multiplication of the form [n]P+ [m]Q. It can 

be done by calculating separately the product values 

and then by adding them. But if this is done by a 

combined operation then this is called multi-scalar 

multiplication. These algorithms can also be used 

for such operations. 

 

V. CONCLUSIONS 
 

In the past, a thorough examination of the 

algorithms with the respect to particular technology 

has only been partially done. The merit of the new 

technology is to be evaluated by its ability to 

efficiently implement the computational algorithms. 

Therefore, it is important to develop computational 

structures that fit well into the execution model of 

the processor and are optimized for the current 

technology. In such a case, optimization of the 

algorithms is performed globally across the critical 

path of its implementation.  

In this work, we have presented & discussed in 

details about few new algorithms in DBNS and 

TBNS, as a technique for representing numbers that 

allows potentially low complexity arithmetic 

operations using a variety of implementation media. 

The design of the architecture that converts any 

integer into TBNS & that performs the 

multiplication of two integers is simple & efficient. 

These approaches greatly improves the practicality 

of both DBNS and TBNS. We have represented any 

real number in both DBNS and TBNS which will 

improve the performance of a multiplier. 

As future works, we want to design the complete 

architecture of the multiplier based on DBNS and 

TBNS and implement it in a processor. Also we 

want to improve the proposed algorithms and find 

and try to reduce the computational complexities 

and errors. 
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