
TBNS Representation Of Any Real Number

Arnab Chowdhury
1
, Moyukh Laha

2
, Ayan Santra

3
, Balmiki Roy

4
, Biplab Bhadra

5
,

Subhasis Maitra
6

Department of Electronics and Communication Engineering

Kalyani Government Engineering College

Kalyani, Nadia, West Bengal, India

Abstract – The basic aim of Multi Base Number

System is to reduce the algebraic complexity and

to enhance the speed of the existing algorithms.

Both DBNS and TBNS have significant roles in

achieving this. In this paper, we have introduced

a few algorithms to find Triple Base Number

System and Triple Base Chain. This in turn leads

to the representation of any real number in

TBNS. Introduction of Single Digit Triple Base

Number System is another aspect of study in this

paper. Analysis has been done in details in terms

of time complexity, which prove the novelty of

the algorithms.The variation of error with

increase in the value of the integer is calculated.

Efficient implementation of these algorithms will

result in the design of an efficient architecture of

a multiplier unit.The proposed algorithms are

supposed to be efficient and can be widely used in

the field of Digital Signal Processing (DSP) &

Elliptic Curve Cryptography (ECC).

Keywords – DBNS, TBNS, SDDBNS, SDTBNS,

Real number representation, Error, DSP and

ECC

I. INTRODUCTION

Low performance ALUs never look upon the

problem of time complexity. High performance,

flexibility, space complexity and low power

consumptions are the most important issues in the

current signal processing architectures. The signal

processing algorithms face many challenges in real-

time applications because of their high

computational complexity. Therefore, the major

issues have been the enhancement of speed of the

arithmetic units.In general we can conclude that if

the computational complexity of operations

performed by an ALU, multiplications and additions

in particular, can be reduced, it results in the design

of a high performance ALU.

Representation of an integer in TBNS improved the

performance of the ALU by reducing the complex

computations. Now if we can express any real

number in TBNS with a minimal error, it will be a

great boon for the industry that deals with DSP &

ECC. In this paper, we introduce a few algorithmsto

convert any real numberinto Triple Base Number

System. The basic principle of the first algorithm is

that every integer is divided by 30 (expressed as

2
1
3

1
5

1
). We have designed another algorithm to

convert any real number into Single Digit Triple

Base Number System (SDTBNS). This is not the

only algorithm to represent a floating point number

in TBNS. We have approached with a more general

algorithm employing the concept of place value.

II. EXISTING ALGORITHMS

Algebraic complexity of different Algorithms in

Signal Processing and Cryptography leads to a

major problem and Researchers are trying to

develop new Algorithms to solve these problems. To

enhance the speed of the existing Algorithms,

different number systems have been found for point

multiplication in elliptic curve cryptography (ECC)

&coefficient multiplication in digital signal

processing (DSP) mainly for digital filter design.

Among the different number system, DBNS, DBC,

HBTJSF, w-NAF are efficient. Recently, to increase

the speed again, TBNS, SDTBNS have been

developed. There are different method to convert

any integer or fraction into TBNS and hence

SDTBNS.

It all started with a number system which employed

bases as 2 and 3, allowing as digits only 0, 1, and

requiring O[log N] [1] nonzero digits, known as the

„Double Base Number System (DBNS)‟. Any

integer can be represented in DBNS.

The general form of representation is:

Double base chains have been obtained with a

greedy approach [8], relying on the search of the

closest {2, 3} – integer to a given number. This

approach tends to increase the length of the chain.

Then tree based approach was introduced which is

very well known to us now. The tree based approach

[2] has been generalized in order to obtain other

kinds of double base chains. Even though DBNS

989

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

schemes exhibit reasonably good performance for 8

bit multiplication, they are not efficient for higher

bits and is highly redundant.

For further enhancement of the performance of

arithmetic operations and to reduce the hardware

complexities, a new concept called Triple Based

Number Systems (TBNS) [11]. It was introduced

for performance enhancement of the multiplier

of the digital signal processors. We use 2, 3 and 5 to

represent any integer in TBNS. Efficiency of this

number system has been dealt already with in details

and a comparison between TBNS and DBNS clearly

indicate the advantages of the former in terms of

speed, hardware complexity and power dissipation.

Different algorithms are proposed. Algorithms like

Joint Binary-Ternary Representation System

(JBTRS), Triple Base Hybrid Joint Sparse Form

(JSF) and Joint Double Base Chain (JDBC) [9] are

important in terms of complexity, efficiency. From

different analysis it is clear that JTBNS is only

comparable with HBTNS, but HBTNS requires a

pre computation look-up-table. Also the number of

doublers required for HBTNS is more than that

required for JTBNS at the cost of adders. But the

complexity to design a doubler is more than to

design an adder. Hence JTBNS is advantageous

from all respect.

III. PROPOSED ALGORITHMS

Let us discus about the algorithms to represent any

integer in TBNS.

Algorithm I

The algorithm is shown in the following steps -

1. Let us consider any integer „n‟.

2. We then divide the number by 30.

3. Dividing any number by 30 means that it is

either divisible by 30 or after dividing the

number by 30 gives a quotient and a remainder

that lies in the range of 1-29.

4. Out of the remainders in the range, we can

easily represent 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15,

16, 18, 20, 24, 25 and 27 using 2, 3, and 5.

The remaining remainders that cannot be

represented by 2, 3, and 5 are 7, 11, 13, 14, 17,

19, 21, 22, 23, 26, 28, and 29.

5. If 7, 11, 13 can be represented in TBNS then we

can easily represent 14, 21, 22, 26, and 28 in

TBNS since they can be obtained by

multiplying 2
1

or 2
2

or 3
1
.The remaining

numbers (17, 19, 23, and 29) has to be

represented in the same way.

6. To represent the remaining numbers in TBNS,

we first check whether the remainder is

divisible by 15, 10, 6, 5, 3, and 2 in descending

order. That means that the divisibility of the

remainder is first checked with 15, then 10 and

this particular order is followed. Divisibility by

these numbers signifies that the remainder can

easily be represented using 2, 3, and 5. The

reason behind checking the divisibility of

remainders by 15, 10, 6, 5, 3, and 2 is shown in

the table 1.

Table 1

Remainders represented using bases 2, 3 and 5

Integers Indices

 2 (i) 3 (j) 5 (k)

1 0 0 0

2 1 0 0

3 0 1 0

4 2 0 0

5 0 0 1

6 1 1 0

8 3 0 0

9 0 2 0

10 1 0 1

12 2 1 0

15 0 1 1

16 4 0 0

18 1 2 0

20 2 0 1

24 3 1 0

27 0 3 0

If the remainder is not divisible by any of the

following, it is checked whether the remainder is

greater than 15 or not. If yes it is divided by 15 &

again the remainder is checked using the same

procedure i.e. from step 4.

If the remainder >=10 &<15, it is divided by 10 &

the divisibility of the remainder is checked and same

procedure is repeated.

If the remainder >=6 &<10, it is divided by 6 & the

divisibility of the remainder is checked and same

procedure is repeated.

If the remainder is not divisible by any of the

following, it is checked whether the remainder is

greater than 15 or not. If yes it is divided by 15 &

again the remainder is checked using the same

procedure i.e. from step 4.

The same method is applied by following the

specific order to represent the remainder in TBNS.

990

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

7. Now let us consider the quotient. The quotient

may be greater than 30 or less than 30. If the

quotient is greater than 30, repeat from step 2.

Else repeat from step 4. The quotient is treated

in the same manner as the remainder.

8. The process is terminated when either the

remainder or the quotient is zero and thus we

get the desired result in TBNS.Thus using this

algorithm, we can represent any integer by the

bases 2, 3, and 5 in an efficient manner.

The algorithm is illustrated with an example. Let us

take a number as 89. Then we follow these steps –

1. The number (89) is divided by 30.

2. Since the number (89) is not divisible by 30,

after division, the quotient is 2 & the remainder

is 29.

3. Since the remainder is not divisible by 10, 6, 5,

3, 2; we divide 29 by 15. The quotient is 1 &

the remainder is 14.

4. Again 14 is divisible by 2. The quotient is 7.

Finally 7 is again divided by 3, resulting the

value of the quotient as 2 & remainder as 1.

5. Thus we can represent 89 in the following

manner -

89 = (2
1
3

0
5

0
* 2

1
3

1
5

1
) + (2

0
3

1
5

1
+ 2

1
3

0
5

0
*

 (2
1
3

0
5

0
* 2

0
3

1
5

0
+2

0
3

0
5

0
))

 = 2
2
3

1
5

1
+ (2

0
3

1
5

1
+ 2

1
3

0
5

0
* (2

1
3

1
5

0
+ 2

0
3

0
5

0
))

Algorithm II

Algorithm II is nothing but a modified version of

Algorithm I. To reduce the complexity of the

algorithm, we need to modify the algorithm using an

approximation. The approximation is used while

representing the remainders. Instead of dividing by

15, 10, 6, 5, 3, and 2; we represent the remainders

that cannot be represented using 2, 3, and 5 using

Single Digit TBNS. Here the algorithm is discussed

in details.

The steps from 1-5 are repeated as in Algorithm I.

The modifications are:-

Instead of checking the divisibility of the

remainders, we introduce & apply the concept of

SDTBNS. The remainders that cannot be expressed

in terms of 2, 3, and 5; i.e. 7, 11, 13, 17 etc. are

expressed in the form of 2
i
3

j
5

k
.

For example, 7 can be expressed using SDTBNS in

the following way –

7 = 2
-35

*3
-45

*5
47

, where the mod error is 0.000228.

Similarly the other remainders can also be

represented in SDTBNS as shown in the Table 2

below. The table gives an idea about the errors in

representation of an integer in SDTBNS. The values

of i, j, and k are assumed to be optimal both in

accordance with accuracy and data bus width.

Again the steps 7 and 8 of Algorithm III are

repeated for the termination procedure. Thus any

integer is expressed using the TBNS chain and the

SDTBNS technique, which is assumed to be

effective in the context of Signal Processing and

Elliptic Curve Cryptography.

Table 2

SDTBNS representation of the prime numbers within the range 30 and the corresponding errors

Remainder

Power of 2

(i)

Power of 3 (j)

Power of 5

(k)

Error

(Mod)

7 -35 -45 47 0.000228

11 49 87 -79 0.0001

13 -80 3 34 0.000027

17 52 2 -22 0.000519

19 -58 -12 35 0.00007

23 -53 -56 63 0.000127

29 58 28 -42 0.00022

Let us compare between the third and the fourth

algorithm. We will work out with the same example

i.e. 89, which was represented using Algorithm I.

1. The number (89) is divided by 30

2. Since the number (89) is not divisible by 30,

after division, the quotient is 2 & the remainder

is 29.

3. 29 can be expressed by SDTBNS in the form of

:- 29 = 2
58

* 3
28

* 5
-42

The error in this case is 0.00022.

991

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

4. Thus we can represent 89 in the following

manner -

89 = (2
1
3

0
5

0
* 2

1
3

1
5

1
) + 2

58
3

28
5

-42

 = 2
2
3

1
5

1
+ 2

58
3

28
5

-42

We can easily differentiate between Algorithm I &

Algorithm II. In case of the first algorithm, we can

represent any integer in TBNS without any error but

the complexity increases as the integer value

increases. It is much more generalized. On the

contrary, in the case of the second algorithm we are

representing an integer with a reduced complexity

but by introducing some errors in the representation.

The number of terms in the expression is also

reduced.

To give an idea about the variation of error with the

increase in the value of the integer & the power of

30, we have plot a graph to illustrate the change.

Figure 1. Plot of powers of 30 against the calculated error

Let us now discuss some important points regarding

the algorithms that are used to represent any integer

in TBNS.

1. Maximum number that can be represented using

this algorithm up to 3
rd

 power of 30 is

(29*30
3
+ 29*30

2
+ 29*30 + 29 = 80999)

Percentage error = 0.00075

2. For any integer, that is to be represented using

this algorithm, the maximum percentage error is

0.00305.

From table 2, we find that the maximum error is

occurring while representing 17 in SDTBNS. And as

we know that error always gets cumulated in this

algorithm, so maximum error occurs when the

number is 474827, which can be written as –

(17*30
3
+ 17*30

2
+ 17*30 + 17)

Error obtained in this case is 14.496, which is

obtained from [(0.000519*30
3
)+(0.000519*30

2
) +

(0.000519 * 30) + 0.000519]

To understand the above points, we illustrate them

by taking the help of two examples –

i. 14854 = (16*30+15) * 30 + 4

= 16*30
2
+ 15*30 + 4

 = 2
4
. (2.3.5)

2
+ (3.5) * (2.3.5) + 2

2

= 2

6
.3

2
.5

2
+ 2.3

2
.5

2
+ 2

2
.3

0
.5

0

Percentage Error = 0

ii. 15719 = ((17*30+13) * 30) + 29

= (2
52

3
2
5

-22
) (2

1
3

1
5

1
)

2
+ (2

-80
3

3
5

34
) (2

1
3

1
5

1
)

+ (2
58

.3
28

.5
-42

)

= 2
54

.3
4
.5

-20
+2

-79
.3

4
.5

35
+2

58
.3

28
.5

-42

Percentage Error = 0.00297%

power

0

power

1

power

2

power

3

Error for 7 0.000228 0.00684 0.02052 0.6156

Error for 11 0.000103 0.00309 0.00927 0.2781

Error for 13 2.7E-05 0.00081 0.0243 0.729

Error for 17 0.000519 0.01557 0.4671 14.013

Error for 19 7.6E-05 0.00228 0.0684 2.052

Error for 23 0.000127 0.00381 0.1143 3.429

Error for 29 0.00022 0.0066 0.198 5.94

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

E
rr

o
r

v
a

lu
es

 f
o

r
d

if
fe

r
en

t
p

o
w

er
s

o
f

3
0

Powers of 30

Error for 7

Error for 11

Error for 13

Error for 17

Error for 19

Error for 23

Error for 29

992

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. These algorithms can be used to represent any

real numbers. It is discussed in details in the

next portion.

4. In case of Algorithm III, as the value of the

integer increases, the complexity also increases,

which may lead to increase in redundancy.

For example,

a. 2357 = [((2
1
3

0
5

0
* 2

1
3

1
5

1
) + 2

1
3

2
5

0
) * 2

1
3

1
5

1
] +

(2
0
3

1
5

1
+ 2

1
3

0
5

0
) = (2

3
3

2
5

2
+ 2

2
3

3
5

1
) + (2

0
3

1
5

1
 +

2
1
3

0
5

0
)

b. 1573 = 52*30 + 13 = (30+22)*30 + 13

= (2
1
3

1
5

1
+ 2

0
3

1
5

1
+ 2

1
3

1
5

0
+ 2

0
3

0
5

0
) * (2

1
3

1
5

1
) +

(2
1
3

0
5

1
+2

0
3

1
5

0
)

= 2
2
3

2
5

2
+ 2

1
3

2
5

2
+ 2

2
3

2
5

1
+ 2

1
3

1
5

1
+ 2

1
3

0
5

1
+

2
0
3

1
5

0

Now the algorithms shown above in the paper has

applications only while representing an integer. But

the real deal is to represent any real number in

DBNS or TBNS. In this paper we can use the above

four algorithms to represent any real number in

DBNS or TBNS. Again we can use the same

approach of SDDBNS or SDTBNS to represent the

same real number in DBNS or TBNS. Let us discuss

the algorithms in detail and then analyse them.

We have discussed the algorithms that can be used

to represent any integer to DBNS and then TBNS.

Now let us explain the algorithms to represent any

real number in DBNS or TBNS, which is the most

interesting topic of this paper.

Algorithm III

The algorithm is explained in the following steps -

1. Let us consider any real numberas „n‟.

2. We then separate the number into integer

portion and decimal portion.

3. The integer part is expressed in TBNS using

any algorithm that are described in details or

any other algorithm like tree based approach in

case of DBNS.

4. Now to represent the decimal part in TBNS, we

first convert the decimal part in binary form.

We need to take some approximation if the

representation of the decimal part in binary

reaches a recursive loop. In that case we take up

to 8 digits.

5. Since we know the place values of each „0‟ and

„1‟ we can use them to represent the decimal

part in TBNS.

6. We add the place values of each „1‟ and find the

result. For example, the „1‟ at the 8
th

 digit will

have a place value as 2
(8-1)

.

7. The sum obtained is represented using any of

the four algorithms that are shown above or

any other algorithm to express it in TBNS.

8. 2
-8

 is then multiplied with the obtained TBNS

form.

Thus we get our desired result and can easily

represent any real number in TBNS form without

introducing large amount of error.

Let us take an example to illustrate the above stated

algorithm.

1. Let us take a real number as 6.675.

2. Now the integer part is 6 and the decimal part is

0.675.

3. 6 can be easily represented using any algorithm

between I and II or by using any other

algorithm that are already being proposed and

used.

4. Now 0.675 is represented in binary form as

(10101110)2.

5. We represent the above binary form as

2
-8

* (2
1
+2

2
+2

3
+2

5
+2

7
) = 2

-8
 * 174.

6. 174 can be expressed in TBNS. The obtained

result is multiplied with 2
-8

.

Error will vary according to the algorithm that is

used to represent the number in TBNS. Instead of

using the above algorithm to represent any real

number in TBNS, we can approach with the concept

of Single Digit TBNS. Let us now discuss them in

details.

Algorithm IV

Input: Any real number „n‟

Output: SDTBNS representation of the number

1. int i,j,k,s1=0,s2=0,s3=0;

2. float e,e1=0.005,n1;

3. for k=-100 to k<=100 do /* outer loop */

4. for j=-100 to j<=100 do /* inner loop 2 */

5. fori=-100 to i<=100 do /* inner loop 1 */

6. n1=2
i
* 3

j
* 5

k
;

7. e = (n-n1)/n;

8. if e<0 then

e=-(e);

9. if e<e1 then

e1=e;s1=i;s2=j;s3=k;

10. end inner loop 1

993

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

11. end inner loop 2

12. end outer loop

13. print the powers of 2, 3 and 5 and the error.

The above algorithm can only be implemented using

any programming language like C or Java.

Let us take the same example to compare between

SDDBNS and SDTBNS –

1. Let the number be 5.67.

2. After computing the program we get the result

as 5.67 = 2
-37

 * 3
-41

 * 5
45

3. The error is 0.000033.

After discussing about all the algorithms in details,

we present two tables that can help us a lot in

distinguishing the different algorithms and a

designer can choose the best algorithm required for

his purpose. The tables are shown below. We have

used the same integer (1077) & real number

(1077.36523)for representation in either DBNS or

TBNS so that we can compare by using some

parameters.

Table 3

Comparison between the different algorithms with respect to various parameters

Algorithms Number

of

Elements

in the

Chain

Maximum/

MinimumPower

of 2

Maximum/

MinimumPower

of 3

Maximum/

MinimumPower

of 5

Highest

(or

Lowest)

Power

Percentage

Error

1 5 2 2 2 2 0

2 3 2 3 2 3 0

3 1 32 14 -19 32 0.00268

4 1 69 39 -52 69 0.001046

5 5 -8 3 2 -8 0.00018

6 7 -8 2 2 -8 0.00018

For both the tables drawn, algorithm 1 denotes the

algorithm to represent any integer in TBNS as

described in „algorithm I‟, algorithm 2 resembles

„algorithm II‟, algorithms 3 approach SDTBNS to

represent any integer, algorithms 4 approach

SDTBNS to represent any real number, algorithms 5

and algorithm 6 use „algorithm III‟ to represent the

real number TBNS, where the integer is represented

by using„algorithm II‟, „algorithm I‟ respectively.

Table 4

Comparative study of the proposed Algorithms

Algorithms

Applicable

to

Computational

complexity

Hardware requirement

Error

Speed of

computation Requirement

of adders &

multipliers

Capacity of

the adders &

multipliers

1 Integer Moderate High Low Errorless Moderate

2 Integer Moderate Low High Moderate Fast

3 Integer High Least High Moderate Slow

4 Any Real

number

High Least High Moderate Slow

5 Any Real

number

High Low High Moderate Slow

6 Any Real

number

High Moderate Moderate Low Moderate

994

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

IV. APPLICATIONS

Digital signal processing (DSP) is the technology

that is omnipresent in almost every engineering

discipline. A typical processor devotes a

considerable amount of processing time in

performing arithmetic operations, particularly

multiplication operations. Multiplication is one of

the basic arithmetic operations and it requires

substantially more hardware resources and

processing time than addition and subtraction. In

fact, 8.72% of all the instruction in typical

processing units is multiplication. The core

computing process is always a multiplication

routine; therefore, DSP engineers are constantly

looking for new algorithms and hardware to

implement them. Finite impulse response (FIR)

filters, discrete cosine transform (DCT), and discrete

Fourier transform (DFT), for instance, are central

operations in high-throughput systems and they use

a huge amount of such operations. Their

optimization widely impacts the performance of the

global system that uses them.Application of this

number systems in digital signal processing (DSP)

has been explored. Multiplier based on TBNS is one

of the fast and low power multiplier.

 For multiplication algorithms performed in DSP

applications latency and throughput are the two

major concerns from delay perspective. In TBNS,

the calculations of the exponential power of the

different prime bases are necessary. Fewer gates will

be required. Less energy, less hardware will be

needed for implementation. In this paper, TBNS is

applied to the binary number system and is used to

develop digital multiplier architecture. TBNS is

much more efficient in the multiplication of large

numbers as it reduces the multiplication of two large

numbers to that of two smaller ones. The algorithms

can be implemented in the design of a low power

high speed algorithms for arithmetic logic units

using TBNS. Employing this technique in the

computation algorithms of the coprocessor will

reduce the complexity, execution time, area, power.

The TBNS technique has its maximum application

in Fast Fourier Transform, where complex and large

multiplications are required. In the case of the

radix-2 DIT-FFT algorithm, the butterfly takes two

inputs (X0, X1) and gives two outputs (Y0, Y1) by the

formula -

Y0=X0+X1ω
к

Y1=X0-X1ω
к
where ω= twiddle factor.

As this is basically a complex multiplication and

addition so, by this proposed algorithm, FFT

calculation can be done faster. Same is applicable in

the case of DIF-FFT algorithm. And by decimation

more point DFT can be calculated efficiently.

We have shown a block diagram to explain it by

using Triple Base Number System (TBNS),

employing the bases as 2, 3, and 5. Similar

architecture can be obtained in case of DBNS.

995

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 2. Block Diagram of a Multiplier Unit

One of the most important application of multi base

number system lies in the field of cryptography.

Cryptography is study of mathematical techniques

related to aspects of information security such as

confidentiality, data integrity, entity authentication,

and data origin authentication. Triple Base Number

System (TBNS) has found application in

cryptography especially in Elliptic Curve

Cryptography (ECC).

Scalar multiplication is the bottleneck operationof

the elliptic curve cryptography. It is to computethe

result - Q = rSwhen S and Q are points on the

elliptic curve and ris a positive integer. The

computation time of theoperation strongly depends

on the representationof „r‟.„r‟ can be represented

using the various algorithms in DBNS and TBNS.

In ECC, signature verification is one of the most

important step and this mainly requires a double-

scalar multiplication of the form [n]P+ [m]Q. It can

be done by calculating separately the product values

and then by adding them. But if this is done by a

combined operation then this is called multi-scalar

multiplication. These algorithms can also be used

for such operations.

V. CONCLUSIONS

In the past, a thorough examination of the

algorithms with the respect to particular technology

has only been partially done. The merit of the new

technology is to be evaluated by its ability to

efficiently implement the computational algorithms.

Therefore, it is important to develop computational

structures that fit well into the execution model of

the processor and are optimized for the current

technology. In such a case, optimization of the

algorithms is performed globally across the critical

path of its implementation.

In this work, we have presented & discussed in

details about few new algorithms in DBNS and

TBNS, as a technique for representing numbers that

allows potentially low complexity arithmetic

operations using a variety of implementation media.

The design of the architecture that converts any

integer into TBNS & that performs the

multiplication of two integers is simple & efficient.

These approaches greatly improves the practicality

of both DBNS and TBNS. We have represented any

real number in both DBNS and TBNS which will

improve the performance of a multiplier.

As future works, we want to design the complete

architecture of the multiplier based on DBNS and

TBNS and implement it in a processor. Also we

want to improve the proposed algorithms and find

and try to reduce the computational complexities

and errors.

VI. REFERENCES

[1] Christophe Doche, David R. Kohel, and

Francesco Sica, "Double-Base Number System for

Multi-scalar Multiplications", Draft, September, 9,

2008.

[2]Doche, C.,Habsieger, L. , "A Tree-

BasedApproach for Computing Double-

BaseChains", in: Y. Mu, W. Susilo and J. Seberry

(Eds.), ACISP 2008, LNCS 5107, PP. 433-446,

2008, Springer-Verlag Berlin Heidelberg 2008.

[3] Avanzi, R. M., Cohen, H., Doche, C., Frey,G.,

Nguyen, K., Lange, T., Vercauteren, F.:Handbook

of Elliptic and HyperellipticCurve Cryptography, in:

Discrete Mathematics and its Application, Chapman

and Hall/CRC, Boca Raton (2005).

[4]Avanzi, R. M., Dimitrov, V. S., Doche, C., Sica,

and F.: Extending ScalarMultiplication using

Double Bases, in: Lai, X., Chen, K. (Eds.),

ASIACRYPT 2006, LNCS, vol. 4284, pp. 130

– 144, Springer, Heidelberg (2006).

[5]J. Adikari, V. Dimitrov, and L. Imbert. Hybrid

Binary-Ternary Joint Sparse Form and its

Application in Elliptic Curve Cryptography.

Preprint, Available at: http://eprint.iacr.org/2008.

[6] V. S. Dimitrov, G. A. Jullien and W. C. Miller,

"Theory and Application of Double Base Number

System", IEEE Transaction on Computers, vol. 48,

No. 10, pp-1098-1106, October, 1999.

[7] S. Maitra, A. Sinha, "Triple-Base Hybrid Joint

Sparse Form and its Applications", International

Journal of Computer Applications (0975 – 8887),

vol. 43, No. 3, April, 2012.

[8] Pavel Sinha, Amitabha Sinha,

KrishanuMukherjee and Kenneth Alan Newton,

"Triple Base Number Digital and Numerical

Processing System", Patent filed under E. S. P.

Microdesign Inc. , Pennsylvania, U. S. A. , U. S.

Pat. App. No. 11/488, 138.

[9] S. Maitra, A. Sinha, "A Single Digit Triple Base

Number System – A New Concept for Implementing

High Performance Multiplier Unit for DSP

Applications", Proceedings of the sixth International

Conference on Information, Communication and

Signal Processing (ICICS2007), December, 10-

13,2007.

[10] S. Maitra, A. Sinha, “Architecture of Mixed

Radix Number System – A New Approach of

Designing Digital Filter”, proceedings of the 10
th

IASTED International Conference on Signal and

996

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Image Processing(SIP2008), August, 18-20,2008,

Kailua-Kona, HI, U.S.A

997

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

