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Abstract: In this paper, we are comparing two techniques for 

correlation in neural networks: Back Propagation Algorithm 

and Pair-wise Correlation. The back-propagation algorithm 

operates in two distinct phases: (1) the forward pass or recall 

phase and (2) the backward pass or learning phase. But in 

Pair-wise correlation, hardware design using hierarchical 

systolic arrays are used. From the investigation, we came to a 

conclusion that the computational delay is less for pair-wise 

correlation as compared to Back Propagation Algorithm. 
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I. INTRODUCTION 

 

Artificial neural networks (neural nets) have emerged as a 

promising alternative for solving real world problems such 

as speech and patter recognition, radar signal tracking, and 

sonar target detection and bio-medical application. They are 

able to satisfy the basic requirement of real world problems, 

i.e., high execution speed. But, for solving any problem, 

first a neural net has to be trained or the network weights 

have to be adjusted to correctly classify a set of example 

patterns, an operation that is highly computation intensive. 

The correlation map, which represents the correlations 

between all pairs of recorded units, has become an effective 

modelling method of biological neural circuits and brain 

disease biomarker. For example, correlation maps have 

shown specific deviations in the neural network 

organizations in Alzheimer’s and epilepsy patients. Real-

time tracking of underlying neural network properties is 

important not only for monitoring these nervous system 

related diseases but also for improving our understanding of 

their biological bases. Correlation maps facilitate network 

analysis and monitoring, the computational cost required to 

construct correlation maps exhibits quadratic growth with 

the number of input channels. Thus, correlation maps of 

spike trains recorded by multielectrode arrays (MEAs) are 

mostly constructed offline. With the rapid advance of 

MEAs, the drastic increase in the number of channels would 

further increase the computational cost required to construct 

the correlation map.A number of systolic algorithms are 

available for matrix_vector multiplication, the basic 

computation involved in the operation of a neural net. Using 

these, many systolic algorithms have been formulated for 

the implementation of neural nets. Kung et al. have 

proposed a unified systolic architecture for the 

implementation of neural net models. It has been shown that 

the proper ordering of the elements of the weight matrix 

makes it possible to design a cascaded DG (dependency 

graph) for consecutive matrix vector multiplication, which 

requires the directions of data movement at both the input 

and the output of the DG to be identical. Using this 

cascaded DG, the computations in both the recall and the 

learning iterations of a back-propagation algorithm have 

been mapped onto a ring systolic array. The same mapping 

strategy has been used in for mapping the hidden Markov 

model (HMM) and the recursive back-propagation network 

(RBP) onto the ring systolic array. The main drawback of 

the above implementations is the presence of spiral (global) 

communication links. Thus, an important advantage of the 

systolic architecture, i.e., use of a locally communicative 

interconnection structure, is lost. By placing side by side the 

arrays corresponding to adjacent weight layers, both the 

recall and the learning phases of the back-propagation 

algorithm can be executed efficiently. But, as the directions 

of data movement at the output and the input of each array 

are different this leads to a very non uniform design. Again, 

a particular layout can only implement neural nets having 

identical structures. For neural nets that are structurally 

different, another layout would be necessary. In this paper, 

we are comparing two techniques for correlation in neural 

networks:  Back Propagation Algorithm and Pairwise 

Correlation. 

 

II. BACK-PROPAGATION ALGORITHM 

 

The back-propagation algorithm operates in two distinct 

phases: (1) the forward pass or recall phase and (2) the 

backward pass or learning phase. The recall phase is used to 

compute the state values of the hidden and output layer 

neurons. In the learning phase, the error values computed 

for the output layer neurons are propagated backward to 

compute the error values of all the hidden layer neurons and 

to adjust their input weights.  

The computations involved in the recall phase can 

be represented in the matrix form as follows: 
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A DG for computing the state values of layer l neurons from 

the state values of its preceding layer is shown in fig.1.. It 

can be observed that all the nodes are functionally identical 

and differ only in the directions of data movement, which 

depend on the position of a node in the DG. The above DG 

can be mapped onto a linear systolic array in a 

straightforward manner. A projection can be taken in the 

vertical direction and the schedule hyper planes can be 

chosen in a direction parallel to the horizontal. 

                        
                        

Fig.1. DG for the Recall phase[1] 
 

BP net of six neurons per layer onto a six-processor array. It 

may be observed that the first and the last links of the first 

and the last processor, respectively, are shorted. Thus, for 

i=1, Pii-1=Pi and similarly for i=N, Pi+1=Pi . The 

operations performed by a processor in the i th iteration are 

as given in Algorithm 1. 

 

 

 

 

 

 

Algorithm 1:  In the following algorithm it is assumed that 

the processors in the linear array are represented as Pf (k) , 

where f (k)=k, 1≤k≤N≤2, represents the processors P1 , P2 , 

..., PN_2, and Pf (k) for f (k)=(N&k+1), 1≤k≤N≤2, 

represents the processors PN, PN&1, ..., PN_2+1 . Using 

these notations, the algorithm for computing the state values 

of layer l neurons from the state values of layer (l&1) is as 

follows: 

 

 

 
 
 
This algorithm is executed repeatedly with increasing values 

of l till the state values of all the output layer neurons have 

been determined. It is assumed that the state value aiˡ after 

its evaluation is stored in the processor Pi. 

For calculating lower layer $ values, we use the formula 
 

 
 

The DG for $ commutation is shown in fig.2 
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                FIG.2. DG for $-value computation.[1] 

 

Algorithm 2 is repeatedly executed with decreasing values 

of l, i.e., from l=L to l=2, in order to compute the $-values 

of all the hidden layer neurons. 

 

 
 

After deriving DGs for representing the operations in the 

different execution phases, steps are outlined to execute the 

back-propagation algorithm. 
 The main drawback of Back Propagation algorithm 

is that as the number of processors increases, the speed also 

increases 

 

 

 

 

III. PAIRWISE CORRELATION 

 

The correlation between spike trains is a useful 

measurement for revealing the relationship between 

neurons. Calculating correlations between all spike trains 

yields a correlation map where nodes represent neurons or 

electrodes and edges indicate thedegree of correlation 

between neural recordings (1 and 0 representcorrelated and 

uncorrelated relationships, respectively). A cross-

correlogram based method is employed to reduce hardware 

costs and provide effective correlation analysis between 

spike trains. 

 

 
Fig. 3. (a) Procedure of computing a cross-correlogram. (b) Correlated 

spike trains (left) and the corresponding cross-correlogram   (right). (c) 

Uncorrelated spike trains (left) and the corresponding cross-correlogram 

(right). (d) Correlation map obtained by calculating all the pair wise cross-

correlograms of spike trains recorded by electrodes.[1] 

 

The cross-correlogram is a representation of correlation 

between two spike trains. Fig. 3(a) summarizes the 

procedure to generate a cross-correlogram. A target and a 

reference spike train are aligned and divided equally into a 

series of bins in which “1” represents a spike. 

The systolic array is a specialized form of parallel 

computing architecture. Identical processing units are 

organized in a regular network. Each processing unit only 

communicates with its neighboring units. Pipelines are 

inserted in communication channels, which make the data 

flow through the network rhythmically and regularly. The 

hardware architecture for calculating the crosscorrelogram 

between spike trains is illustrated in the right panel of Fig. 4. 

Spike trains, _x and _y, are fed into two delay chains. For 

the purpose of analysis, delay chains coordinate the spike 

trains and generate all signal pairs characterized by certain 

timing lags. One delayed spike signal, yi , is broadcasted to 

each logic AND gate as one input. The other input of each 

logic AND gate is delayed _x with a particular timing lag to 

yi . Logic AND gates are used to perform binary 

multiplications. Hardware adders accumulate the results of 

logic AND gates. Results of adders are stored in registers, 

“R.” The number of pairs of logic AND gates and adders are 

equal to the window size. 
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Fig.4. Architecture of the 1-D array for calculating cross-correlograms 

between spike trains (right), and architecture of the 2-D array for 
calculating correlation maps (left). In the right panel, “R” represents 

registers. The latency of the architecture for calculating correlation maps 

scales linearly with the number of recordings. As the number of recordings 
increases, the number of PEs of the architecture exhibits quadratic growth. 

 

As the number of spike trains increases, the growth of  the 

computational latency will be quadratic if using single 

correlation hardware. In this paper, we propose a 2-D 

systolic array that embeds much identical pair-wise cross-

correlogram hardware to speed up the computation. 

 

 
 

Fig.5. Computational delay comparisons between the proposed hardware 

architecture and the MATLAB software, which implements the 

crosscorrelogram- based algorithm on Intel Core I5 650 (at 3.2 GHz). 
 

We compared the pair-wise correlation hardware 

architecture with a back propagation algorithm in terms of 

computational delay. The computational delay of the BPA is 

obtained by measuring the running time of the MATLAB 

program implementing the crosscorrelogram- based 

algorithm on Intel Core I5 650. The above graph shows that 

the computational delay of the BPA exhibits quadratic 

growth as the number of channels increases. The systolic 

array outperforms the BPA substantially as the number of 

channels increases. When the number of channels is 32, the 

systolic array is almost 3500 times faster than the BPA. 

 

 

 

 

IV. CONCLUSION 

 

In this paper, the pair-wise correlation hardware 

design utilizing hierarchical systolic arrays is proposed for 

constructing correlation maps from multiple spike trains. By 

adopting the largely parallel architecture, the delay of the 

hardware for constructing correlation maps scales linearly 

with the number of recordings, whereas the growth of delay 

is quadratic for a software-based back propagation 

approach.The computational delay can be reduced by three 

orders of magnitude when the hardware is adopted. This 

novel method leads to future devices for real-time 

monitoring and tracking of large-scale neural networks. 
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