
Test Effort Estimation With & Without Stub And Driver

Using Test Point Analysis (TPA)
Adesh kumar

1
, Vikas Beniwal

2

1
Research Scholar, M Tech, Department of Computer Science & Engineering

N C College of Engineering, Israna, Panipat
2
Assistant Professor, Department of Computer Science & Engineering

N C College of Engineering, Israna, Panipat

Abstract
Development of software has initiated the new role of software

testing. At the beginning of software products development the

majority of the testing was performed by the developer himself

due to the simplicity of the product. As the complexity of

software products has increased, the role of all parts in the

software development process has been modified including

with the role and importance of the testing process. The testing

process has important position in the process of software

product development, approximately 50% of total cost is

expended in testing the software being developed. A technique

similar to FPA, Test Point Analysis (TPA) can be applied for

the estimation of testing effort. We are using a new approach to

the estimation of software testing efforts based on stubs and

drivers. Stubs and drivers are needed when the unit and

integration testing is done. Drivers and stubs can be reused so

that constant changes that occur during the development cycle

can be retested frequently without large amounts of additional

test code.

Keywords
TPA, Test point, Driver, Stub etc.

I. Introduction
TPA is one such method which can be applied for estimating

test effort in black-box testing. The goal of this technique is to

outline all major factors that affect testing projects and to

ultimately do accurate test effort estimation. If one has a

predetermined estimate of test hours allocated, TPA can help

on testing of areas that pose higher risk. This is accomplished

by determining relative importance of functions and using the

available test time on testing of functions of relatively higher

importance. As per TPA method, there are two kinds of test

points-dynamic and static.

In the many approaches to test effort estimation, the use of

stubs and drivers may be one. This could become a robust

method of estimation over a period of time. The estimation

technique is not claimed to be rigorous, but the approach offers

practical advantages over techniques currently in use.

Test case generation:- Test case generation takes up 40-45% of

the testing effort. Efficient and complete test cases ensure

efficiency of the test process. Automating the test case

generation process could reduce the test case generation time

by up to 60-70%.

Test case execution: - Test case execution consumes 40-50% of

test effort. Application changes during maintenance result in

need for increased number of regressions. In manual test

execution, the test effort increases with increase in number of

regressions. By automating the test execution, the testing effort

per regression test round reduces as the number of regressions

increase.

The most common approach to unit testing requires drivers and

stubs to be written. The driver simulates a calling unit and the

stub simulates a called unit. The investment of developer time

in this activity sometimes results in demoting unit testing to a
lower level of priority and that is almost always a mistakes.It
allows for automation of the testing process, reduces

difficulties of discovering errors contained in more complex

pieces of the application, and test coverage is often enhanced

because attention is given to each unit. Finding the error (or

errors) in the integrated module is much more complicated

than first isolating the units, testing each, then integrating

them and testing the whole.

Driver: A program that calls the interface procedures of the

module being tested and reports the results. A driver

simulates a module that calls the module currently being

tested.

Stub: A program that has the same interface procedures as a

module that is being called by the module being tested but is

simpler. A stub simulates a module called by the module

currently being tested.

Drivers and stubs can be reused so the constant changes that

occur during the development cycle can be retested

frequently without writing large amounts of additional test

code. In effect, this reduces the cost of writing the drivers and

stubs on a per-use basis and the cost of retesting is better

controlled. We are using this approach as the stubs and

drivers are reused then the less coding is to be done, and less

will be the test effort for test the code.

II. TPA Approach for Estimation

 Figure 1: Derived TPA model

1. Computing Dynamic Test Points (TPs)

Dynamic test points are related to individual function and are

based on FPA transaction function points. Dynamic test

points are computed by summing the product of Transaction

Function points (FPt), Dependency Factor (Df), and Dynamic

Quality Characteristics (Qd) for individual function points.

Dependency factor (Df): A rating is assigned for the

individual functions points. A useful heuristics is to have

25% functions in low, 50% in medium and 25% in high

category.

Total FP when stubs and drivers are present

Dynamic test points Static test points

 Total test points

 Primary test hours

 Total test hours

Identify and rate

dynamic test points

(transaction fp)

Identify and rate

static test points

(data fp)

Environmental and

productivity factors

Control Factor

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

 User Importance of the functions: Rating—3-low, 6-medium,

12-high.

 Usage Intensity of the functions: Rating—2-low, 4-medium,

12-high.

 Interfacing with other functions: Rating—2-low, 4-medium,

8-high.

 Complexity of function: Rating—3-low, 6-medium, 12-high.

These ratings are added and divided by 20 (sum of medium

rating) to arrive at weighted rating, and uniformity factor could

be 0.6 or 1. The uniformity is taken at 0.6 in case of second

occurrence of unique function, where test specs can be reused

else, uniformity factor is taken at 1.

Dependency factor is calculated by multiplying weighted rating

with uniformity factor.

Dynamic quality characteristics (Qd): This calculation is

based on rating and weighing factor for the variables-

suitability, security, usability, efficiency. Weighing factors for

these four variables are 0.75, 0.05, 0.10, and 0.10 respectively.

For each of these variables the rating is (0-not important, 3-

relatively unimportant, 4-medium importance, 5- very

important, 6- extremely important).

Total dynamic test points equal sum of FPt* Df*Qd for

individual functions.

2. Computing Static Test Points

Static test points are related to overall FP of the system and

static quality characteristics of the system. Overall FP of the

system is assumed at minimum 500(in case it is below

500)recommends functionality, usability, reliability, efficiency,

portability and maintainability as quality characteristics and

several sub- characteristics within these as desirable. For each

quality characteristics statistically tested, a value of 16 is added

to Qi.

3. Total test points

Total test points are equal to sum of Dynamic and Static test

points.

TP = (Sum of FPt* Df *Qd for individual functions) + (Total

FP* Qi/500)

4. Productivity factor (P)

Indicates tests hours required per test point. It ranges from

0.7(if test team is highly skilled) to 2(if test team has

insufficient skills) hours per test point. Productivity factor

requires historical data of the projects and it can very from one

organization to another organization. So, this factor can be

called organization dependent factor.

5. Environmental factor (E)

The number of test hours required for each test point is not

only influenced by productivity factor but also by the

environmental factor. The following environmental factor

might affect the testing effort: test tools, development testing,

test basis, test ware, development environment, and test

environment. Environmental factor is calculated by adding the

rating on all the above environmental factors and divided by

value 21(the sum of nominal ratings).

6. Primary test hours

The number of primary test hours is obtained by multiplying

the number of test points by productivity factor (P) and

environment factor (E).

Primary test hours = Test points (TP)*P*E

7. Planning and control allowance

The standard value of this is 10%.this value may be increased

or decreased depending on two factors

Team size: The bigger the team, the more effort it will take

to manage the project. The ratings for this value are:

3- if team consists of up to 4 persons, 6- if team consists of

up to 5 and 10 persons, 12- if team consists of more than 10

persons.

Management tools: More the number of tools used to

automate management and planning less are the amount of

effort required. The ratings for this value are:

2-both an automated time registration system and automated

defect tracking system are available, 4- either an automated

time registration system or automated defect tracking system

is available, 8- no automated systems are available.

Planning and control allowance = Team size factor +

Management tools factor

8. Total test hours

The total number of test hours is obtained by adding primary

test hours and the planning and control allowance.

Total test hours = Primary test hours + Planning and control

allowance

In the many approaches to test effort estimation, the use of

stubs and drivers may be one. This could become a robust

method of estimation over a period of time. The estimation

technique is not claimed to be rigorous, but the approach

offers practical advantages over techniques currently in use.

III. Results
DCM Data Systems Ltd. had a number of software products.

One of the newly developed products was installed locally

and abroad. It is found that some of the program functionality

claimed did not adequately function. The management of the

company then handed over the project to a LEVEL 5

company--- KR V&V. KR V&V decided to use TPA method

to estimate the testing effort. System study by KR V and V

requests a 2 day systems and requirements study to

understand the scope of testing work and assess the testing

requirement to arrive at TPA estimate. Earlier experience of

KR V and V using TPA technique suggests it requires 1.4

tests per hours per unit test point. FP count is estimated

earlier by using FPA estimate technique and then applies the

TPA method to calculate the testing effort and compare the

result, when the coding is done without writing stubs and

drivers and when stubs and drivers are written and reused for

minimized the cost of rewriting code again and again. The

data count is 650 and transaction count is 600 for this project.

User importance (Up): It implies how important the function

to the users related to other system functions is.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

Weights:

Weight with-

out stubs and

drivers

Weight with

stubs and

drivers

Category Rating

30% 30% Low importance 3

40% 40% Medium

importance

6

30% 30% High importance 12

Table 3.1: User importance

Usage intensity (Ui): It depicts how many users process a

function and how often.

Weights:

Weight with-

out stubs and

drivers

Weight with

stubs and drivers

Category Rating

20% 20% Low intensity 3

60% 60% Medium

intensity

6

20% 20% High

intensity

12

Table 3.2: Usage intensity

Interfacing (I): It implies how much one function affects other

parts of the system.

Weights:

Weight with-

out stubs and

drivers

Weight with

stubs and

drivers

Category Rating

25% 25% Low interfacing 2

25 25% Medium

interfacing

4

50% 50% High interfacing 8

Table 3.3: Interfacing

Complexity (C): The complexity of a function is determined

on the basis of its algorithm. The complexity rating of the

function depends on the number of conditions in the functions

algorithm.

Weights:

Weight

without stubs

and drivers

Weight with stubs

and drivers

Category Ratin

g

10% 10% Low complex 3

80% 80% Medium

complex

6

10% 10% High

complex

12

Table 3.4: Complexity

Uniformity factor (U): It checks the reusability of the code.

Weights:

Weight

with-out

stubs and

drivers

Weight

with stubs

and drivers

Category Rating

40% 60% Repetitive test cases 0.6

60% 40% Unique test cases 1

Table 3.5: Uniformity factor

Dynamic quality characteristics (Qd): Four dynamically

explicit measurable quality characteristics are defined in

TPA.

Weights:

Quality characteristics Weight

Functionality 0.75

Security 0.05

Usability 0.10

Efficiency 0.10

Table 3.6: Dynamic quality characteristics

Usability –Characteristics relating to the effort needed for

use and on the individual assessment of such use by a set of

users.

Weights:

Weight with-out

stubs and

drivers

Rating Weight with

stubs and drivers

Rating

Highly

important

5 Highly important 5

Table 3.7: Usability

Suitability – This characteristics relating to the achievement

of the basic purpose for which the software is being prepared.

Weights:

Weight without

stubs and drivers

Rating Weight with

stubs and drivers

Rating

Medium important 4 Medium

important

4

Table 3.8: Suitability

Security –Ability to prevent unauthorized access.

Weights:

Weight with-out

stubs and drivers

Rating Weight with

stubs and drivers

Rating

Extremely

important

6 Extremely

important

6

Table 3.9: Security

Efficiency- characteristics related to the relationship between

the level of performance of software and the amount of

resources used.

Weights:

Weight with-out

stubs and drivers

Rating Weight with

stubs and drivers

Ratin

g

Medium

important

4 Extremely

important

6

Table 3.10: Efficiency

3.1 Calculation of TPA without stubs and drivers:

1. Dynamic test point: Dt = FPf* Df * Qd

Where, FPf =Transaction FP = 600 (given)

Df = Dependency Factor = Weighted rating on Importance to

user, usage intensity, interfacing of functions, complexity of

functions.

 Rating on user importance(Up):

 Up= 3*30%+6*40%+12*30%

 =0.9+2.4+3.6 =6.9

 Rating on usage intensity(Ui):

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

 Ui=2*20%+4*60%+12*20%

 = 0.4+2.4+2.4 =5.2

 Rating on interfacing (I):

 I= 2*25%+4*25%+8*50%

 =0.5+1.0+4.0=5.5

 Rating on Complexity (C):

 C= 3*10%+6*80%+12*10%

 =0.3+4.8+1.2=6.3

 Df = (Up + Ui + I + C)/ 20* U

 U =Uniformity Factor= 60%*1+40%*0.6

 = 0.6+ 0.24 =0.84

 Df = (Up + Ui + I + C)/ 20* U

 Df = (6.9+5.2+5.5+6.3)/20 *0.84 =1.0

Qd = Dynamic quality characteristics = weighted score on

following 4 quality characteristics:

 Suitability(weight=0.75, medium importance—rate

=4)

 Security (weight=0.05, extremely importance—rate

=6)

 Usability(weight=0.10, highly importance—rate =5)

 Efficiency(weight=0.10, medium importance—

rate=4)

 So,

 weighted score = (0.75*4+0.05*6+0.10*5+0.10*4)

 Qd = 3+0.3+0.5+0.4= 4.2

Hence,

 Dt =FPt *Df*Qd

 Dt =600 *1.0 *4.2=2520

2. Static test point

 St=total FP * Qi/500

Total FP = Data FP+ Transaction FP= 650+600=1250

 St=total FP * Qi/500

 =1250*80/500 =200

3. Total test point

 TP= Dt+ St = 2520+200= 2720

4. Productivity Factor (PF) = 1.4 tests hours per test point

Rating on test tools=1

Rating on development testing =4

Rating on test basis = 6

Rating on development environment =2

Rating on test environment =2

Rating on test ware =2

5. Environmental Factor

 EF =1+4+6+2+2+2/21 =0.81

6. Primary test hours

 P=TP* PF *EF=2720*1.4*0.81 = 3085

Planning control allowance =6%+2% = 8%

7. Total test hours = P+ 8% of P

 =3085+8% of 3085 = 3332

3.2 Calculation of test hours with stubs and drivers:

1. Dynamic test point: Dt = FPf* Df * Qd

Where,

 FPf =Transaction FP = 600 (given)

 Df = Dependency Factor = Weighted rating on

Importance to user, usage intensity, interfacing of functions,

complexity of functions.

 Rating on user importance(Up):

 Up= 3*30%+6*40%+12*30%

 =0.9+2.4+3.6 =6.9

 Rating on usage intensity(Ui):

 Ui=2*20%+4*60%+12*20%

 = 0.4+2.4+2.4 =5.2

 Rating on interfacing (I):

 I= 2*25%+4*25%+8*50%

 =0.5+1.0+4.0=5.5

 Rating on Complexity (C):

 C= 3*10%+6*80%+12*10%

 =0.3+4.8+1.2=6.3

 Df = (Up + Ui + I + C)/ 20* U

 U =Uniformity Factor= 60%*0.6+40%*1

 = 0.36+ 0.4 =0.76

 Df = (Up + Ui + I + C)/ 20* U

 Df = (6.9+5.2+5.5+6.3)/20 *0.76 =0.9

Qd = Dynamic quality characteristics = weighted score on

following 4 quality characteristics:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

 Suitability(weight=0.75, medium importance—rate

=4)

 Security (weight=0.05, extremely importance—rate

=6)

 Usability(weight=0.10, highly importance—rate =5)

 Efficiency(weight=0.10, extremely importance—

rate=6)

 So,

 weighted score = (0.75*4+0.05*6+0.10*5+0.10*6)

 Qd = 0.6+0.3+3+0.5= 4.4

Hence,

 Dt =FPt *Df*Qd

 Dt =600 *0.9 *4.4=2376

2. Static test point

 St=total FP * Qi/500

 Total FP = data FP+ transaction FP= 650+600= 1250

 St=total FP * Qi/500

 =1250*80/500 =200

3. Total test point

 TP= Dt+ St = 2376+200= 2576

4. Productivity Factor (PF) = 1.4 tests hours per test point

Rating on test tools=1

Rating on development testing =4

Rating on test basis = 6

Rating on development environment =2

Rating on test environment =2

Rating on test ware =2

5. Environmental Factor

 EF=1+4+6+2+2+2/21 =0.81

6. Primary test hours

 P=TP* PF *EF=2576*1.4*0.81 = 2922

Planning control allowance =6%+2% = 8%

7. Total test hours = P+ 8% of P

 =2922+8% of 2922 = 3156

IV. Conclusion
Testing effort is the number of hours that is required for the

testing process of software that is being developed. Effective

test effort estimation is one of the most challenging and

important activity in software testing. There are many popular

models for test effort estimation in vogue today. Ineffective test

effort estimation leads to schedule and cost overruns. This is

due to lack of understanding of development process and

constraints faced in the process. But we believe that our

approach overcomes all these limitations. We used the TPA

method for our proposed work. Test Case Point Analysis is a

tool to estimate the effort required to test a software project,

based on the number of use cases and the other features of

object-orientation used in software development. Testing is

an important activity that ensures the quality of the software.

TCP is such a method which is almost equal to the actual

effort.

V. Future work
Here is an area where further work is necessary, obviously.

However, there are methods that make it possible to estimate

effort required for executing Testing projects. Test Points are

slowly emerging for sizing Software Testing projects. In the

many approaches to test effort estimation, the use of stubs

and drivers may be one. Drivers and stubs can be reused so

the constant changes that occur during the development cycle

can be retested frequently without writing large amounts of

additional test code. In effect, this reduces the cost of writing

the drivers and stubs on a per-use basis and the cost of

retesting is better controlled. We are using this approach as

the stubs and drivers are reused then the less coding is to be

done, and less will be the test effort for test the code. Either it

takes more code writing for stubs or drivers but the

reusability of these minimizes the overall coding and the test

effort also. So using the stubs and drivers approach is more

beneficial than without them. This could become a robust

method of estimation over a period of time. It leads to

accurate estimation of test effort by this estimation we can

easily calculate the test effort for the each phases of a testing

life cycle. We can apply this estimation to find the estimated

test plan and it is also a very powerful method to generate

realistic test cases.

VI. References
[1]. Nick Jenkins,―A Software Testing Primer‖,An

Introduction to Software Testing,2008.

http://www.nickjenkins.net

[2]. Dr. Ing Michael Kaiser,―The V Model of project

execution specification phases & QA‖, iXIT Engineering

Technology GmbH QA-IX04-ProjExecution- &BDB01-0003/

2006-02-28, http://www.ixit.de

[3]. Raymond Lewallen,―Software Development Life

Cycle‖,2005

[4]. Hee-Gyun Yeom, and Sun-Myung Hwang, ―A Study on

Tool for supporting the Software Process Improvement”

International Journal of Software Engineering and Its

Applications Vol.3, No.2, April, 2009

[5]. Jakobsson,―V-Model Testing –Process model

configuration using SVG‖, PMoC 14/04/2003 Version 1.5

[6]. Brian Marick,―New models for test development‖

Reliable Software Technologies,1999. Version 1.0 of

03/28/00

[7]. John Callahan, George Sabolish,―A Process

Improvement Model for Software Verification and

Validation‖,Proceedings of 19th Annual Software

Engineering Workshop, NASA Goddard Space Flight Center,

Greenbelt, MD, November 30-December 1, 1994.

[8]. Dr. Dwayne L. Knirk,―software Testing Process

Improvements‖ Thirteenth International Conference on

Testing Computer ,Software Sandia National

Laboratories,NM 87185-0638

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

[9]. Bor-Yuan Tsai, Simon Stobart, Norman Parrington and

Barrie Thompson ―Iterative Design and Testing within the

Software Development Life Cycle‖ Software Quality Journal,

6(4), December 1997, 295-309

[10]. Mary Jean Harrold,―Testing: a roadmap‖,In Proceedings

of the conference on the future of software engineering, pages

61–72. ACM Press, 2000.

[11]. Vijay.N, ―Little Joe Model of Software Testing‖ Software

Solutions Lab, Honeywell, Bangalore, PACT- Product

Assurance and Capability Team

[12]. Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand

Meyer Arno Fiva, ―Contract Driven Development =Test

Driven Development – Writing Test Cases‖ ESEC/FSE’07,

September 2007 ACM 978-1-59593-811-4/07/0009

[13]. Kuhn, D.R. and D.R. Wallace, ―Software Fault

Interactions and Implications for Software Testing.‖IEEE

Trans. Softw. Eng., 2004. 30(6): p. 418-421.

 [14]. R.Venkat Rajendran, Director, Deccanet Designs Ltd.,

―White paper on Unit Testing‖

 [15]. R. C. Bryce, A. Rajan, and M. P. E. Heimdahl,

―Interaction testing in model-based development: Effect on

model-coverage‖. Proc. of the 13th Asia-Pacific Software

Engineering Conf., pages 258--269, Dec.2006.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

