
 

The Container-Based and Session-Separated Webserver Architecture 

for Detecting Intrusions in Multitier Web Applications 

K. Sravya Bindu 
1
,   N. Srihari Rao 

2 

1 
M.Tech Student, CSE Dept, CMR Institute of Technology, Hyderabad, A.P., MIAENG 

  
2 
Associate Prof., CSE Dept., CMR Institute of Technology, Hyderabad, A.P., MIAENG, MCSI 

 

  

Abstract  
 

Due to the increase in application and data complexity, 

a singletiered or doubletiered design becomes 

unimportant. In order to handle this increase in 

application and data complexity multitiered design can 

be used. In a multitiered design, the webserver runs the 

application front-end logic and database or file server 

sits at the back-end. We need an architecture that 

monitors both web and the following database requests 

in order to identify an attack. DoubleGuard is an 

Intrusion Detection System (IDS) system which models 

the network behavior of user sessions across both the 

front-end webserver and the back-end database. Our 

project uses DoubleGuard architecture in order to 

detect intrusions in multitier web applications and 

shows that DoubleGuard can effectively detect a wide 

range of attacks with low false positives. 

 

Keywords: IDS, Webserver, Database Server, Attacker, 

Multitier Web Applications, World Wide Web (WWW). 

 

1. Introduction  
Banking, travel ticket booking, social 

networking, messaging, information exchange are all 

being done via the World Wide Web. All these services 

typically employ a webserver front end that runs the 

application user interface logic as well as a back-end 

server that consists of a database or file server. Web 

services have always been the target of attackers due to 

their ubiquitous use for personal and or corporate data. 

Web application vulnerabilities are used to corrupt the 

back-end database system, for example, SQL injection 

attacks. 

In general both the web and the database 

servers are vulnerable. Attacks are network borne and 

come from the web clients. Attackers can launch 

application layer attacks to compromise the webservers 

they are connecting to. The attackers can bypass the 

webserver to directly attack the database server. If the 

attacks can neither be detected nor prevented by the 

current webserver IDS, then the attackers may take  

 

 

over the webserver after the attack and that afterward 

they can obtain full control of the webserver to launch 

subsequent attacks. Attackers may strike the database 

server through the webserver or, more directly by 

submitting SQL queries. By submitting SQL queries, 

they may obtain and pollute sensitive data within the 

database. 

In the classic three-tier model as shown in Fig. 

1, at the database side, we are unable to tell which 

transaction corresponds to which client request. The 

communication between the webserver and the 

database server is not separated, and we can hardly 

understand the relationships among them. 

 

 
Fig. 1. Classic three-tier model in which the webserver 

acts as the front-end, with the file and database servers 

as the content storage back-end. 

 

The web IDS and database IDS can detect 

abnormal network traffic sent to either of them 

individually. These IDSs cannot detect attacks when 

normal traffic is used to attack the webserver and 

database server. Within the current multithreaded 

webserver architecture detecting or profiling of causal 

mapping between webserver traffic and database server 

traffic is not feasible because traffic cannot be clearly 

attributed to user sessions.  

The organization of the remainder of the paper 

is as follows. Section II describes the related work. 

Section III investigates the method employed for our 

940

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100220



 

project. Section IV presents the results of our project 

work. Section V explains the conclusions and future 

work. 

 

2. Related Work 
The IDS in paper [2] detects known attacks by 

matching misused traffic patterns or signatures. 

Anomaly detection IDS in [3] and [4] requires defining 

and characterizing the correct and acceptable static 

form and dynamic behavior of the system, which 

afterwards can be used to detect abnormal changes or 

anomalous behaviors. We can build behavior models 

by performing a statistical analysis [5] on historical 

data or by using rule-based approaches to specify 

behavior patterns.   

Intrusion detection alerts are transformed into 

brief intrusion reports in order to reduce the number of 

replicated alerts, false positives, and non relevant 

positives through a collection of components provided 

by intrusion alerts correlation [6]. The IDS in [7] uses 

temporal information to detect intrusions, which has the 

risk of mistakenly considering independent but 

concurrent events as correlated events. The IDS in [8] 

detects intrusions or vulnerabilities by statically 

analyzing the source code or executables. Information 

flow can be dynamically tracked [9] to understand taint 

propagations and detect intrusions. Lightweight 

virtualization [10] on desktop systems can be used to 

isolate different application instances. 

LAMP  is a web application stack that 

simplifies development and deployment. LAMP stack 

consists of Linux, Apache, MySQL, Perl/PHP 

technologies. LAMP stack provides a turnkey system 

that allows even inexperienced programmers to quickly 

and easily deploy a full-blown web service. CLAMP 

[11] is an architecture that adds data Confidentiality to 

the LAMP model. CLAMP isolates code at the 

webserver layer, and data at the database layer by users. 

This isolation guarantees that users’ sensitive data can 

only be accessed by code running on behalf of different 

users. CLAMP architecture can prevent data leaks even 

in the presence of attacks. The DoubleGuard 

architecture [1] that we used for our project, utilized the 

container ID to separate session traffic as a way of 

extracting and identifying causal relationships between 

webserver requests and database query events. 

 

3. Method 
DoubleGuard uses the Container-Based and 

Session-Separated Webserver Architecture for 

Detecting Intrusions in Multitier Web Applications. 

DoubleGuard can detect these types of attacks by 

creating normality models of isolated user sessions that 

include both the web front-end and back-end network 

transactions. Lightweight process containers are 

lightweight, ephemeral and disposable servers for client 

sessions. These dedicated containers are isolated virtual 

computing environments to which each user’s web 

session is assigned. Container ID is used to associate 

the web request with the subsequent database queries. 

Here, lightweight virtualization is used to isolate 

different application instances and are therefore useful 

for isolation and containment of attacks. DoubleGuard 

can build a causal mapping profile by taking both the 

webserver and database traffic into account. 

As shown in Fig. 2, other sessions’ knowledge 

is not revealed to attackers by restricting the attackers’ 

stay within the webserver container, therefore 

legitimate sessions will not be compromised directly by 

an attacker. 

 

Fig. 2. Webserver instances running in containers. 

 

A. Attack Scenarios 

DoubleGuard system is effective at capturing the 

following types of attacks: 

 

1. Privilege Escalation Attack: The website serves 

both regular users and administrators. For a regular 

user, the web request ru will trigger the set of SQL 

queries Qu; for an administrator, the request ra will 

trigger the set of admin level queries Qa. Now suppose 

that an attacker logs into the webserver as a normal 

user, upgrades his/her privileges, and triggers admin 

queries so as to obtain an administrator’s data. This 

attack can never be detected by either the webserver 

IDS or the database IDS since both ru and Qa are 

legitimate requests and queries (shown in Fig. 3). Our 

approach, however, can detect this type of attack since 

the DB query Qa does not match the request ra, 

according to our mapping model. 

 

941

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100220



 

 

Fig. 3. Privilege escalation attack. 

2. Hijack Future Session Attack: This class of attacks 

is mainly aimed at the webserver side. An attacker 

usually takes over the webserver and therefore hijacks 

all subsequent legitimate user sessions to launch 

attacks. For instance, by hijacking other user sessions, 

the attacker can eavesdrop, send spoofed replies, and/or 

drop user requests. a compromised webserver can harm 

all the Hijack future sessions by not generating any DB 

queries for normal-user requests(shown in Fig. 4). 

According to the mapping model, the web request 

should invoke some database queries (e.g., a 

Deterministic Mapping), then the abnormal situation 

can be detected. The isolation property of our 

container-based webserver architecture can also prevent 

this type of attack. 

 

 

Fig. 4. Hijack future session attack. 

3. Injection Attack: Attackers can use existing 

vulnerabilities in the webserver logic to inject the data 

or string content that contains the exploits and then use 

the webserver to relay these exploits to attack the back-

end database (shown in Fig. 5). Since our approach 

provides a two-tier detection, even if the exploits are 

accepted by the webserver, the relayed contents to the 

DBserver would not be able to take on the expected 

structure for the given webserver request. Therefore 

these are detected as a deviation from the SQL query 

structure that would normally follow such a web 

request.  

 

 
Fig. 5. Injection attack. 

4. Direct DB Attack: It is possible for an attacker to 

bypass the webserver or firewalls and connect directly 

to the database. An attacker could also have already 

taken over the webserver and be submitting such 

queries from the webserver without sending web 

requests. Without matched web requests for such 

queries, a webserver IDS could detect neither. 

Furthermore, if these DB queries were within the set of 

allowed queries, then the database IDS itself would not 

detect it either (shown in Fig. 6). However, this type of 

attack can be caught with our approach since we cannot 

match any web requests with these queries. 

 

 

Fig. 6. DB Query without causing web requests. 

 

 

B. DoubleGuard limitations: 

 

Some of the operational and detection limitations of 

DoubleGuard: 

1. Vulnerabilities due to Improper Input 

Processing: In DoubleGuard, all of the user input 

values are normalized so as to build a mapping model 

based on the structures of HTTP requests and DB 

queries. Once the malicious user inputs are normalized, 

DoubleGuard cannot detect attacks hidden in the 

values. 

2. Possibility of Evading DoubleGuard: Within the 

same session that the attacker connects to, it is allowed 

for the attacker to launch “mimicry” attacks. It is 

possible for an attacker to discover the mapping 

patterns by doing code analysis or reverse engineering, 

and issue “expected” web requests prior to performing 

malicious database queries. 

3. Distributed DoS: DoubleGuard is not designed to 

mitigate DDoS attacks. These attacks can also occur in 

the server architecture without the back-end database. 

 

 

942

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100220



 

4. Results 
The following screens are shown to 

demonstrate as to how our project works using 

DoubleGuard as the detection architecture.  

 

     Fig. 7. Administrator login to the web application 

 

 
Fig. 8. Administrator can view all the privileged 

information 

 

 

Fig. 9. Normal User login to the web application 

              

 

Fig. 10. Attacker fails at privilege escalation attack 

after login to the system as normal user 

      

 

Fig. 11. Attacker gathers session information to hijack 

all future sessions 

 

 

Fig. 12. Attacker fails to hijack all future sessions 

 

943

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100220



 

 

Fig. 13. Attacker fails at SQL injection attacks after 

login to the system as normal user 

 

 

Fig. 14. Attacker fails at direct DB attack 

 

5. Conclusions and Future Work 

 
Existing approaches correlated or summarized 

alerts generated by independent IDSs, but 

DoubleGuard, a newer approach forms container-based 

IDS with multiple input streams to produce alerts. Such 

correlation of input streams provides a better 

characterization of the system for anomaly detection 

because the intrusion sensor has a more precise 

normality model that detects a wider range of threats. 

Doubleguard achieves this by isolating the flow of 

information from each webserver session with a 

lightweight virtualization. For static websites, 

Doubleguard effectively detects different types of 

attacks by building a well-correlated model. For 

dynamic requests, Doubleguard effectively detects 

different types of attacks where both retrieval of 

information and updates to the back-end database occur 

using the webserver front end. For detecting intrusions 

in multitier web applications, our project used 

container-based and session-separated webserver 

architecture. DoubleGuard can identify a wide range of 

attacks with minimal false positives. The number of 

false positives depends on the size and coverage of the 

training sessions that are used. 

As discussed above, DoubleGuard contains 

some operational and detection limitations. Our future 

work includes performing a thorough analysis on 

existing systems, and finding the pros and cons of each 

approach. Then we want to propose a new scheme 

which will overcome some of these limitations. The 

aim of our future research work is to propose a novel 

technique which will fully safeguard both the web 

server applications and database servers simultaneously 

from attackers. For example, adding DDoS protection 

to the prototype of DoubleGuard will save the system 

from DDoS attacks. 

 

 

 

References 

 
[1]. Meixing Le; Stavrou, A.; Kang, B.B., 

"DoubleGuard: Detecting Intrusions in Multitier Web 

Applications," IEEE Transactions on Dependable and 

Secure Computing, vol.9, no.4, pp.512-525, July-Aug 

2012. 

[2]. B.I.A. Barry and H.A. Chan, “Syntax, and 

Semantics-Based Signature Database for Hybrid 

Intrusion Detection Systems,” Security and Comm. 

Networks, vol. 2, no. 6, pp. 457-475, 2009. 

[3]. H. Debar, M. Dacier, and A. Wespi, “Towards a 

Taxonomy of Intrusion-Detection Systems,” Computer 

Networks, vol. 31, no. 9, pp. 805-822, 1999. 

[4]. T. Verwoerd and R. Hunt, “Intrusion Detection 

Techniques and Approaches,” Computer Comm., vol. 

25, no. 15, pp. 1356-1365, 2002. 

[5]. G. Vigna, W.K. Robertson, V. Kher, and R.A. 

Kemmerer, “A Stateful Intrusion Detection System for 

World Wide Web Servers,” Proc. Ann. Computer 

Security Applications Conf. (ACSAC ’03), 2003. 

[6]. F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. 

Kemmerer, “A Comprehensive Approach to Intrusion 

Detection Alert Correlation,” IEEE Trans. Dependable 

and Secure Computing, vol. 1, no. 3, pp. 146-169, July-

Sept. 2004. 

[7]. A. Seleznyov and S. Puuronen, “Anomaly 

Intrusion Detection Systems: Handling Temporal 

Relations between Events,” Proc. Int’l Symp. Recent 

Advances in Intrusion Detection (RAID ’99), 1999. 

[8]. D. Wagner and D. Dean, “Intrusion Detection via 

Static Analysis,” Proc. Symp. Security and Privacy 

(SSP ’01), May 2001. 

944

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100220



 

[9]. R. Sekar, “An Efficient Black-Box Technique for 

Defeating Web Application Attacks,” Proc. Network 

and Distributed System Security Symp. (NDSS), 2009. 

[10]. Y. Huang, A. Stavrou, A.K. Ghosh, and S. 

Jajodia, “Efficiently Tracking Application Interactions 

Using Lightweight Virtualization,” Proc. First ACM 

Workshop Virtual Machine Security, 2008. 

[11]. B. Parno, J.M. McCune, D. Wendlandt, D.G. 

Andersen, and A. Perrig, “CLAMP: Practical 

Prevention of Large-Scale Data Leaks,” Proc. IEEE 

Symp. Security and Privacy, 2009. 

 

Authors’ Biography 

 

 
K.Sravya Bindu had B.Tech from Kamala 

Institute Of Technology & Science, Huzurabad. She is 

an M.Tech Student in CSE Department of CMR 

Institute of Technology, Hyderabad. She is currently 

working for her M.Tech. research project work under 

the guidance of Mr.N.Srihari Rao. Her areas of interest 

include Network Security, Computer Networks, and 

Programming Languages. 

 

 

N.Srihari Rao had his B.E. from C.B.I.T., 

Hyderabad, and he had M.E. from Karunya Deemed 

University, Coimbatore. He is currently working as 

Associate Professor in CSE Department of CMR 

Institute of Technology, Hyderabad. He is working for 

Ph.D. in CSE Discipline at JNTUA University, 

Anantapur. His areas of interest are Network Security, 

Data Mining, Image Processing, and ICT for various 

fields

945

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100220


