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Abstract – A dominating set D of a fuzzy graph G=( σ,µ) is a cycle 

non split dominating set if the induced fuzzy subgraphH=(<V-

D>,σ,µ) is a cycle. The cycle non split domination number 

γcns(G)of G is the minimum fuzzy cardinality of a cycle non split 

dominating set. In this paper we study a cycle non split 

dominating sets of fuzzy graphs and investigate the relationship 

of γcns(G) with other known parameters of G.    
   
Keywords – Fuzzy graphs, Fuzzy domination, Split fuzzy 

domination number, Non Split fuzzy domination number, cycle non 

split domination number. 
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I. INTRODUCTION 

 

Kulli V.R. et.alintroduced the concept ofsplit domination and 

non-split domination in graphs [3]. Rosenfield introduced the 

notion of fuzzy graph and several fuzzy analogs of graph 

theoretic concepts such as path,cycles and 

connectedness[10].A.Somasundram and S.Somasundram 

discussed domination inFuzzy graphs[11]. MahyoubQ.M.and 

Sonar N.D.discussed the split domination number of fuzzy 

graphs[6].Ponnappan C.Y and et. al. discussed the strong non 

split domination number of fuzzy graphs [9]. In this paper we 

discuss the cycle non split domination number of fuzzy graph 

and obtained the relationshipwith other knownparametersof G. 
 

II. PRELIMINARIES 
 

Definition:2.1 [2] 

Let G=(V,E) be a graph. A subset D of V is called a 

dominating set in G if every vertex in V-D is adjacent to some 

vertex in D. The domination number of G is the minimum 

cardinatliy taken over all dominating sets in G and is denoted 

by (G). 

 

Definition:2.2 [3] 

 A dominating set D of a graph G=(V,E) is a split 

dominating set if the induced subgraph<V-D>is disconnected. 

The split domination number s(G) of a graph G is the 

minimum cardinality of a split dominating set. 

Definition:2.3 [3] 

A dominating set D of a graph G=(V,E) is a non split 

dominating set if the induced subgraph<V-D>is connected. 

The non split domination number ns(G) of a graph G is the 

minimum cardinality of a non split dominating set. 

 

Definition:2.4 [4] 

 A  dominating set D of a graph G=(V,E) is a cycle 

non split dominating set if the induced subgraph<V-D>is a 

cycle. The cycle non split domination number cns(G) of a 

graph G is the minimum cardinality of a cycle non split 

dominating set. 

 

Definition:2.5 [4] 

 A  dominating set D of a graph G=(V,E) is a path 

non split dominating set if the induced subgraph <V-D>is a 

path. The path non split domination number pns(G) of a graph 

G is the minimum cardinality of a path non split dominating 

set. 

 

Definition : 2.6 [10] 

 Let V be a finite non empty set. Let E be the 

collection of all two element subsets of V. A fuzzy graph 

G=(σ,µ) is a set with two functions σ :V→[0,1] and µ: 

E→[0,1] such that µ({u ,v})≤σ(u)σ(v) for all u,v V. 

 

Definition : 2.7 [11] 

 Let G=( σ,µ) be a fuzzy graph on V and V1 V. 

Define σ1 on V1   by σ1(u)=σ(u)for all u V1   and µ1 on the 

collection E1 of two element subsets of V1 by µ1({u ,v}) = 

µ({u ,v}) for all u,v V1, then (σ1,µ1) is called the fuzzy 

subgraph of G induced by V1 and is denoted by <V1>. 

 

Definition : 2.8 [11] 

 The fuzzy subgraph H=(V1,1,1) is said to be a 

spanning fuzzy subgraph of G=(V,,) if 1(u)=(u) for all 

uV1 and 1(u,v)≤(u,v) for all u,vV. Let G (V,,) be a 

fuzzy graph and1 be any fuzzy subset of , i.e. , 1(u)≤(u) 

for all u. 
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 Definition : 2.9 [11] 

            Let G=(,) be a fuzzy graph on V. Let u,vV. We 

say that u dominates v in G if ({u,v})=(u)(v). A subset 

D of V is called a dominating set in G if for every vD, there 

exists uD such that u dominates v. The minimum fuzzy 

cardinality of a dominating set in G is called the domination 

number of G and is denoted by (G) or . 

 

Definition : 2.10 [6] 

A dominating set D of a fuzzy graph G=(,µ) is a 

split dominating set if the induced fuzzy subgraph H=(<V-

D>,,µ) is disconnected.  

The split domination number 𝛾𝑠(𝐺) of G is the 

minimum fuzzy cardinality of a split dominating set. 

 

Definition : 2.11 [6] 

 A dominating set D of a fuzzy graph G=(σ,µ) is a 

non split dominating set if the induced fuzzy subgraph 

H=(<V-D>,σ',µ') is connected. 

          The non split domination number𝛾𝑛𝑠(𝐺) of G is the 

minimum fuzzy cardinality of a non split dominating set. 

 

Definition : 2.12 

 A dominating set D of a fuzzy graph G=(σ,µ) is a 

cycle non split dominating set if the induced fuzzy subgraph 

H=(<V-D>,σ',µ') is a cycle. 

          The cyclenon split domination number 𝛾𝑐𝑛𝑠(𝐺) is the 

minimum fuzzy cardinality of a cyclenon split dominating set. 

 

Definition : 2.13 

 A dominating set D of a fuzzy graph G=(σ,µ) is a 

path non split dominating set if the induced fuzzy 

subgraphH=(<V-D>,σ',µ') is a path. 

          The path non split domination number 𝛾𝑝𝑛𝑠(𝐺) is the 

minimum fuzzy cardinality of a path non split dominating set. 

 

Definition : 2.14[11] 

 The order p and size q of a fuzzy graph G=(σ,µ) are 

defined to be p=∑uVσ(u) and q=∑(u ,v)E µ({u ,v}). 

 

Definition : 2.15 [11] 

An edge e={u ,v} of a fuzzy graph is called an 

effective edge if µ({u ,v}) = σ(u)  σ(v). 

 N(u) = { vV/ µ({u ,v}) = σ(u)  σ(v)} is called the 

neighborhood of u and N[u]=N(u)  {u} is the closed 

neighborhood of u. 

 The effective degree of a vertex u is defined to be the 

sum of the weights of the effective edges incident at u and is 

denoted by dE(u). ∑ (𝑣)𝑣𝑁(𝑢) is called the neighborhood 

degree of u and is denoted by dN(u). The minimum effective 

degree E(G)=min{dE(u)|uV(G)} and the maximum 

effective degree E (G) = max{dE(u)|uV(G)}. 

 

Definition : 2.16 [11] 

The complement of a fuzzy graph G denoted by 𝐺̅ is 

defined to be 𝐺̅ = (, ̅) where ̅({𝑢, 𝑣}) = (𝑢)(𝑣) −
({𝑢, 𝑣}). 
 

 

Definition : 2.17 [11] 

Let :V→[0,1] be a fuzzy subset of V. Then the 

complete fuzzy graph on  is defined to be (,) where 

({u,v})=(u)(v) for all uvE and is denoted by K. 

 

Definition : 2.18 [11] 

A fuzzy graph G=(,µ) is said to be bipartite if the 

vertex V can be partitioned into two nonempty sets V1 and V2 

such that µ(v1,v2)=0 if v1,v2V1 or v1,v2V2. Further if 

(u,v)=(u) (v) for all uV1 and vV2 then G is called a 

complete bipartite graph and is denoted by 𝐾1
,2

 where 1 

and 2 are, respectively, the restrictions of  to V1 and V2. 

 

Definition : 2.19 [11] 

A dominating set D of a fuzzy graph G is said to be a 

minimal dominating if no proper subset D of D is dominating 

set of G such that |D|<|D|. 

 

III. MAIN RESULTS  

Proposition : 1 

For any complete fuzzy graph K then 

𝛾(𝐺) = 𝛾𝑐𝑛𝑠(𝐺) = min{(𝑢)/𝑢𝑉} 

 

Proposition :2 

 For fuzzy bipartite graph 𝐾1 ,2
, 

𝛾𝑐𝑛𝑠(𝐾1,2
) = min {(u)} + min{(v)} ,  where u V1 and 

vV2 

 

Proposition :3 

For fuzzy wheel𝛾cns(G)=(u)such that u is the spoke 

of the wheel. 

 

Proposition :4 

 𝛾cns( G K1)=
i
 (ui).whereui is the pendant vertices 

of the corona and G contains atleast one cycle. 

 

Proposition :5 

 The cycle non split dominating set exists for Petersen 

graph and Davidson graph. 

 

Note : 

 The cycle non split dominating set does not exists for 

path, tree and fan.  

 

Theorem : 1 

For any fuzzy graph G=(,µ), 𝛾(𝐺) ≤ 𝛾𝑐𝑛𝑠(𝐺)<p 

 

Proof 

 Let G=(,µ) be a fuzzy graph. Let D be the minimum 

dominating set. Dcns is the fuzzy cycle non split dominating 

set. Dcns is also a dominating set but need not be a minimum 

fuzzy dominating set.  

 

 Therefore we get |D|≤|Dcns| 

 That is 𝛾(𝐺) ≤ 𝛾𝑐𝑛𝑠(𝐺).    
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Example : Fig. (i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

D={u3,u5}, 𝛾(𝐺) = 0.6 

Dcns={u1,u2},𝛾𝑐𝑛𝑠(𝐺) = 0.7 

 

Theorem 1.1 

𝛾(𝐺) ≤ 𝛾𝑝𝑛𝑠(𝐺) < 𝑝. 

Theorem :2 

 For any fuzzy graph G=(,µ),  

𝛾(𝐺) ≤ min {𝛾𝑠(𝐺), 𝛾𝑐𝑛𝑠(𝐺)}  

 

Proof : 

 Let G=(,µ) be a fuzzy graph. D be the minimum 

fuzzy dominating set. LetDs and Dcns the minimum fuzzy split 

dominating set and minimum fuzzy cycle non split dominating 

set of G respectively. The cardinality of fuzzy dominating set 

need not exceeds either one of the minimum of cardinality of 

fuzzy split dominating set or fuzzy cycle non split dominating 

set. 

 

Therefore |D| ≤ min {|Ds|, |Dcns|} 

Hence 𝛾(𝐺) ≤ min  {𝛾𝑠(𝐺), 𝛾𝑐𝑛𝑠(𝐺)}   

 

 

example :Fig. (ii) 

 

 

 

 

 

 

 

 

 

 

 

Here D = {u3,u5} 𝐷𝑐𝑛𝑠 = {𝑢1, 𝑢6}, Ds = {u2,u3,u4} 

𝛾(𝐺) = 0.6, 𝛾𝑐𝑛𝑠(𝐺) = 0.7, 𝛾𝑠(𝐺) =1.3 

 

Theorem 2.1  𝛾(𝐺) ≤ min  {𝛾𝑠(𝐺), 𝛾𝑝𝑛𝑠(𝐺)} 

 

Theorem : 3 

For any spanning fuzzy sub graph  

𝐻 = (, µ)of G=(,µ),  

 𝛾𝑐𝑛𝑠(𝐻) ≥ 𝛾𝑐𝑛𝑠(𝐺) 

 

 

 

Proof 

Let G=(,µ) be a fuzzy graph and let H = (,µ) be 

the fuzzy spanning sub graph of G. Dcns(G) be the fuzzy 

minimum cycle non-split dominating set of G. Dcns(H) is 

fuzzy cycle non-split dominating set of H but not minimum. 

 Therefore 𝛾𝑐𝑛𝑠(𝐻) ≥ 𝛾𝑐𝑛𝑠(𝐺).   

 

Example: 

Spanning fuzzy sub graph H of G (Fig (ii)) 

 

 

 

 

 

 

 

 

 

 

 

𝛾𝑐𝑛𝑠(𝐺) = 0.7, 𝛾𝑐𝑛𝑠(𝐻) = 1.0 

 

Theorem 3.1𝛾𝑝𝑛𝑠(𝐻) ≥ 𝛾𝑝𝑛𝑠(𝐺). 

 

Theorem : 4 

Let G be a complete fuzzy graphkthen 

cns(G) = min {(u)}, where u is the vertex having minimum 

cardinality. 

 Let Gi is subgraph of G induced  by<V-u> where u is 

the vertex of minimum cardinality,Gi has a vertex set Vi = {V-

u} then 

 cns(G) ≤ cns (G1) ≤ cns (G2)≤… ≤ cns (Gn) provided 

the fuzzy graph Gn is a elementary cycle with three vertices.

  
 

Example :Fig.(iii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛾(𝐺) = 𝛾𝑐𝑛𝑠(𝐺) = 0.1 

 

 G is a fuzzy graph induced by <V-u1> 

cns (G1) = (u2) = 0.2 

cns(G) ≤ cns(G1). 

 

Theorem : 5 

For any fuzzy graph without isolated vertices 

γcns(G)≤ p/2. 
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Proof : 

 Any graph without isolated vertices has two disjoint 

dominating sets and hence the result follows. 

  
 

Example :Fig.(iv) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dcns (G) = {v1,v4} 

< V – Dcns> is a cycle 

p = 1.2, γcns(G) = 0.4 

γcns(G) ≤ p/2 

 

Theorem : 6 

 For any fuzzy graph, γcns (G) ≤ p - E 

 

Proof : 

 Let v be a vertex of a fuzzy graph, such that  

dN(v) = E, then V\N(v) is a dominating set of G, so that 

cns (G) ≤ | V \ N(v)| = P – E.    

 

Example : 

 

 From fig. (iv) p = 1.2, E = 0.6, γcns (G)=0.4 

Theorem : 7 

 For any non trivial connected fuzzy graph G,  

(G) + pns(G) ≤ p and this bound this sharp, the path P4 and 

cycle C4 achieve this bound.   

  
 

Theorem :8 

 A cycle non split dominating set D of G=(,µ) is 

minimal if and only if for each vD one of the following two 

conditions holds  

 (i) N(v)Dcns=  

 (ii) there is a vertex uV-Dcns 

 such that N(u)Dcns={v} 

Proof : 

 Let D be a minimal cycle non split dominating set 

and vD, then D=D-{v} is not a cycle non-split dominating 

set and hence there exist uV-D such that u is not dominated 

by any element of D. If u=v we get (i) and if u≠v we get (ii). 

The converse is obvious.     

  
 

 

Theorem 8.1.pns - set satisfies ore’s theorem. 

 

Theorem : 9 

 For the domination number cnsthe following theorem 

gives a Nordhaus – Gaddum type result. 

 For any fuzzy graph G, cns (G) + cns ( G ) ≤2p. 

Proof : 

Let G be a connected fuzzy graph it may or may not 

contains a cycle.  

Suppose  G contains a cycle then by theorem cns (G) ≤ p. 

Also G  may or may not contains a cycle. We have 

cns ( G ) ≤ p or cns ( G ) = 0 

Vice versa. Hence the inequality is trivial. 

  

Theorem 9.1pns (G) + pns ( G ) ≤2p. 
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