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Abstract- Dynamic modeling means deriving equations that 

explicitly describes the relationship between force and motion in 

a system. To be able to control a robot manipulator as required 

by its operation, it is important to consider the dynamic model in 

design of the control algorithm and simulation of motion.  

                     In general there are two approaches available; the 

Euler-Lagrange formulation and the Newton-Euler formulation. 

This thesis investigates the Lagrange-Euler method in detail. A 

complete derivation of the method is done using two degree of 

freedom serial manipulator with revolute joints in the presence 

and absence of gravitational force. The mathematical model for 

the Dynamic behaviour of the two degree of freedom 

manipulator is developed. The dynamic parameters of the 

system are estimated, and the validity of the resulting dynamic 

model is verified by several simulations, that describe the 

dynamic response of the manipulator to input actuator torques. 

A suggestion for future work is performing thorough dynamic 

parameter identification. An improved model can ultimately be 

implemented in the controller of the manipulator, and optimized 

for a specific job task. 
Keywords-Torque, Dynamics, manipulator, force, motion  

I-INTRODUCTION 

During working cycle a manipulator must accelerate, move at 

constant speed and decelerate. The time varying position and 

orientation of the manipulator is termed as its dynamic 

behaviour. Time varying torques is applied at the joints to 

balance out internal and external force.  

Dynamics is a huge field of study devoted to studying the 

forces required to cause motion [1], [2]. The dynamic motion 

of the manipulator arm in a robotic system is produced by the 

torques generated by the actuators. This relationship between 

the input torques and the time rates of change of the robot arm 

components configurations, represent the dynamic modeling 

of the robotic system which is concerned with the derivation 

of the equations of motion of the manipulator as a function of 

the forces and moments acting on. So, the dynamic modeling 

of a robot manipulator consists of finding the mapping 

between the forces exerted on the structures and the joint 

positions, velocities and accelerations [3]. A good model has 

to satisfy two conflicting objectives. It must include enough 

detail to represent the real behaviour of the robot with 

sufficient accuracy, and it should permit an efficient, stable 

evaluation not only of the model equations but also of their 

derivatives that are needed in optimization. The availability of 

the dynamic model is very useful for mechanical design of the 

structure, choice of actuators, determination of control 

strategies, and computer simulation manipulator motion.  

A robot manipulator is basically a positioning device. To 

control the position we must know the dynamic properties of 

the manipulator in order to know how much force to exert on 

it to cause it to move: too little force and the manipulator is 

slow to react; too much force and the arm may crash into 

objects or oscillate about its desired position. 

A significant amount of research has been reported 

concerning optimal trajectory planning using evolutionary 

methods for an industrial manipulator system. Research made 

the use of cubic spline curves to generate the trajectory 

between the intermediate points of the path. The problem of 

kinematics is solved for two-degree-of-freedom linear 

industrial manipulators. The Newton-Euler technique is used 

for the formulation of the dynamic equations of the 

manipulator. The effectiveness of the proposed method is 

verified through MATLAB simulations in [7], it has shown a 

trajectory generation for a two link robot manipulator without 

the use of the inverse Jacobian matrix, in which the cubic 

spline approach was employed.  

               Robotic manipulators will play important roles in 

future space missions. The control of such space manipulators 

poses planning and control problems not found in terrestrial 

fixed-base manipulators due to the dynamic coupling between 

space manipulators and their spacecraft. A number of control 

techniques for such systems have been proposed; these 

schemes can be classified in three categories. In the first 

category, spacecraft position and attitude are controlled by 

reaction jets to compensate for any manipulator dynamic 

forces exerted on the spacecraft. In this case, control laws for 

earth-bound manipulators can be used, but the utility of such 

systems may be limited because manipulator motions can 

both saturate the reaction jet system and consume relatively 

large amounts of attitude control fuel, limiting the useful life 

of the system [10], [11], and [14]. In the second category, the 

spacecraft attitude is controlled, although not its translation, 

by using reaction wheels or attitude control jets [12]. The 

control of these systems is somewhat more complicated than 

that of the first category, although a technique called the 

Virtual Manipulator (VM) can be used to simplify the 

problem [10], [11], [12], [13], and [14]. The third proposed 

category assumes a free-floating system in order to conserve 

fuel or electrical power [10], [15], and [16]. Such a system 

permits the spacecraft to move freely in response to 

manipulator motions. These too can be modelled using the 

VM approach [15]. Work was done on control algorithm for 

free-floating space manipulators in [14]. It was shown that 

nearly and algorithm that can be applied to conventional 
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fixed-based manipulator can be directly applied to free-

floating manipulators, with few additional conditions. 

 

 

Fig. 1 A 2-DOF planar articulated (RR) arm with fixed base 

 

                These include the measurement or estimation of a 

spacecraft’s orientation and the avoidance of dynamic 

singularities.  

        Significant amount of work is done on the Dynamic 

Control of a Space Robot system with no Thrust Jets 

controlled base [22]. In this paper he discusses dynamic 

control of a free-flying space robot system where the base 

attitude is not controlled by thrust jets. Without external 

forces and moments, the system is governed by linear and 

angular momentum conservation laws. he first derive the 

system dynamic formulations in joint space and in inertia 

space, based on Lagrangian dynamics. Then discuss the fact 

that dynamics of a space robot system cannot be linearly 

parameterized, as opposed to the case of a fixed-based robot. 

 II-BASIC FORMULATION 

In this paper we are considering two cases, one for fixed base 

manipulator and another for the free-floating manipulator, the 

end-effector is made to move in a circular trajectory figure 1 

shows fixed base manipulator, figure 2 shows free-floating 

manipulator. The time varying torques is compared for both. 

A. Assumptions 

 

In this paper author assume a simple model of a robot satellite 

which has an articulated manipulator system, in order to 

clarify the point at issue, they make the following 

assumptions [19] 

1) It is a 2-DOF manipulator with two links, articulated 

robotic arm. 

2) Control technique used is FREE-FLOATING. 

3) Mass of the spacecraft is assumed to very high when 

compared with the mass of the links. 

4) Gravitational force is zero. 

5) Robot arms are not affected by the friction and 

disturbance. 

6) There are no mechanical restriction nor external 

forces and torques, so that momentum conservation, 

and equilibrium of forces and moments, strictly hold 

true during the operation. 

 

B. Nomenclature 

The symbols are defined as 

    torque 

F    force 

, q        joint angle 

         angular velocity 

,        angular acceleration 

L   Lagrangian 

, L1  length of link 1 

, L2   length of link 2 

    mass of link 1 and link 2 

    linear velocity in x-direction 

   linear velocity in y-direction 

    linear acceleration in x-axis 

    linear acceleration in y-direction 

 

 

 Fig.2 Model of a 2-DOF planar robot without fixed base 

 

 

Fig.3 Solving for the joint angles of a two-link planar arm 
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Fig.4 Coordinate frames for two-link planar robot  

C. fundamental equation 

 

Inverse kinematics of manipulators, in order to command the 

end-effector to move to a particular position we need the 

angles of both the links  

cos : = D. 

sin(  =  

 

 

Velocity Kinematics of manipulator, coordinates    

(x, y) of the tool are expressed in this coordinate frame as 

x = x2 =  +  

y =  +  

In order to follow a contour at constant velocity, or at any 

prescribed velocity, we must know the relationship between 

the velocity of the tool and the joint velocities. In this case we 

can differentiate Equations (5) and (6) to obtain 

 =  .   

 =   .   

dX = J(q)d  

 Inverse Velocity and Acceleration, 

 = J(q)  

 = J(q)  +  

b = J(q)  

b =  -  

 =  

 =   b 

Trajectory generation, a common way of causing a 

manipulator to move from here to there in a smooth, 

controlled fashion is to cause each joint to move as specified 
by a smooth function of time. Commonly, each joint starts 

and ends its motion at the same time, so that manipulator 

motion appears coordinated. Exactly how to compute these 

motion functions is the problem of trajectory generation. 

Often, a path is described not only by a desired destination 

but also by some intermediate locations, or via points, 
through which the manipulator must pass en route to the 

destination. In such instances the term spline is sometimes 

used to refer to a smooth function that passes through a set of 

via points. In order to force the end-effector to follow a 

straight line (or other geometric shape) through space, the 

desired motion must be converted to an equivalent set of joint 

motions [2]. 

Equations of Motion, The purpose of a robot manipulator is to 

position and interface its end-effector with the working 

object. The equations of motion are important to consider in 

the design of robots, as well as in simulation and animation, 

and in the design of control algorithms. Equation of motion 

can be described by a set of differential or difference 

equations. The equation set consists of two parts, the 

kinematics equations and the dynamic equation. Robot arm 

kinematics deals with the geometry of robot arm motion as a 

function of time (position, velocity, and acceleration) without 

regards to the forces and moments that cause it.  

 

D. Dynamic Equations  

 

Dynamics of robot is the study of motion with regard to 

forces (the study of the relationship between forces/torques 

and motion).  A dynamic analysis of a manipulator is useful 

for the following purposes: 

1) It determines the joint forces and torques required to 

produce specified end-effector motions (the direct 

dynamic problem). 

2) It produces a mathematical model which simulates 

the motion of the manipulator under various loading 

conditions (the inverse dynamic problem) and/or 

control schemes. 

3) It provides a dynamic model for use in the control of 

the actual manipulator. 

 

III-DYNAMIC FORMULATION 

In this section we derive a general set of differential 

equations that describe the time evolution of mechanical 

       (7) 

      (8) 

      (1) 

       (2) 

         (3) 

         (4) 

         (5) 

         (6) 

            (9) 

          (10) 
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systems. These are called the Euler-Lagrange equations of 

motion. 

Lagrangian formulation, which describes the 

behavior of a dynamic system in terms of work and energy 

stored in the system rather than of forces and moments of the 

individual members involved. The constraint forces involved 

in the system are automatically eliminated in the formulation 

of Lagrangian dynamic equations. The closed-form dynamic 

equations can be derived systematically in any coordinate 

system. 

For control design purposes, it is necessary to have a 

mathematical model that reveals the dynamical behavior of a 

system; we derive the dynamical equations of motion for a 

robot manipulator. Our approach is to derive the kinetic and 

potential energy of the manipulator and then use Lagrange’s 

equations of motion. 

A. Lagrange’s Equations of Motion 

 

Lagrange’s equation of motion for a conservative system are 

given by 

 

 

where q is an n-vector of generalized coordinates qi,  is an n-

vector of generalized forces i, and the Lagrangian is the 

difference between the kinetic and potential energies 

 

L=K-P. 
 

In our usage, q will be the joint-variable vector, consisting of 

joint angles θi, (in degrees or radians) and joint offsets di (in 

meters). Then τ is a vector that has components ni of torque 

(Newton-meters) corresponding to the joint angles, and fi of 

force (Newtons) corresponding to the joint offsets. We shall 

use Lagrange’s equation to derive the general robot arm 

dynamics. Let us first get a feel for what is going on by 

considering some examples. 

B. Two degree of freedom manipulator with fixed base 

The Lagrangian requires kinetic and potential energies of the 

manipulator. The kinetic energy of a rigid body (a link) is 

given by  

K=    mv 2 +   Iw2                                                                

Where v is the linear velocity, w is the angular velocity, m is 

he mass, and I is the moment of inertia of the rigid body at its 

centre of mass. linear velocity v1 =  L1 1,   angular velocity 

w1= 1, moment of inertia I1=   m1
 

 K1 =   m1v1
2 +    I1 w1

2 

  
After substituting the values 

K1 =   m1 L1
2 1

2 

And the potential energy is given by 

       P1 =    m1 gL1 sin  

 

Where g is the magnitude of acceleration due to gravity in the 

negative y-axis direction. 

For link 2 

  x2 = L1 cosƟ1 +  L2 cos ( + )  

y2 = L2 sinƟ1 +  L2 sin (  + ) 

 

Differentiating equation (17) and (18) will give velocity 

component of link 2  and , from these component, the 

square of the magnitude of velocity of the end of link 2 is 

= +                                                                       

The kinetic energy of link 2 with w2= +  and I2= m2 L2
2
 
 
 

is 

K2 =   m2v2
2 +    I2 w2

2                                                                     

The potential energy of link 2 

P2 = m2 g L1 S1 +    m2 g L2 S12                                                                  

Where C1 =cos  , S1 =sin , C12 =cos ( + )  and  S12 
=sin ( + )  

The Lagrangian   L= K - P = K1 + K2 – P1 – P2 is obtained by 

Substituting values of equation (15), (16), (19) and (20) in 

above equation of Lagrangian give the value of L. The 

derivation is in detail in ([2], [3]) 

The Lagrangian-Euler formulation for link1 equation (11) 

gives the torque  at joint 1 as 

 

                                                        

For link 2 it gives torque  at the joint 2 as 

                                                        

The Lagrangian value is differentiated w r t  and  and 

substituted in equation (21) and differentiated w r t  and  

and substituted in equation (22) which gives 

=H11 +H12 +C1+G1                                                                                                                                                
=H21 +H22 +C2+G2                                                                                                                         

Where 

  

H11=  

    (11) 

    (12) 

   (13) 

      (16) 

     (21) 

  (22) 

  (23) 

   (4.31) 

   (4.32) 

  (4.33) 

  (4.34) 

    (14) 

    (15) 

      (17) 

       (18) 

      (19) 

      (20) 
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H12=H21=  

H22= m2  

C1=- L1L2S2 -  

C2=  

G1= g 

G2= g 

 
These coefficients are defined as iterations  

Mii =Hii=effective inertia, Mij =Hij=effective coupling inertia,  

Ci=centrifugal and Coriolis acceleration forces 

The general form of equation is 

 

+ +G = τ                                                                

1) - n x n mass matrix 

2) - n x n matrix and  is an n x 1 

vector of centripetal and Coriolis terms  

3) G - n x 1 vector of gravity terms, and 

4) τ – n x 1 vector of joint torque or forces 

a. It can also be written as  

 +  + =                                                        

this is the final form of the robot dynamical equation we have 

been seeking. 

The units of elements of M(q) corresponding to revolute joint 

variables qi=θi are kg-m2. The units of the elements of M(q) 

corresponding to prismatic joint variables qi=di are kilograms. 

The units of elements of V(q) and G(q) corresponding to 

revolute joint variables are kg-m2/s2. The units of elements of 

V(q ) and G(q) corresponding to prismatic joint variables are 

kg-m/s2. 

 

The final EOM (dynamic model) is 

 =  +  +  

For i= 1, 2,……, n 

The physical meaning of above equation is as follows. 

1. The coefficients of the  terms in these equations 

represent inertia. It is known as effective inertia when 

acceleration of joint i cause a torque at joint i. and 

coupling inertia when acceleration at joint j causes a 

torque at joint i. In other words, the coefficient  is 

related to acceleration  of the joint and represents inertia 

loading of the actuator, In summary 

  = effective inertia at the joint i where the driving 

torque  acts. 

  = coupling inertia between joint i and joint j. It is 

reaction torque  at joint i induced by 

acceleration at joint j. Reverse applies equally with 

torque  as torque at joint j due to acceleration 

of joint i. 

 Since Tr(A)=Tr(A
T
), it can be shown that  

2. The coefficient  represents the velocity induced 

reaction torque at joint i, the first index. The indices j and 

k are related to velocities of joint j and joint k, whose 

dynamic interplay induces a reaction torque at joint i. In 

particular, a term of the form  is the centrifugal 

force acting at joint i due to velocity at joint j and a term 

of the form  is shown as the Coriolis force acting 

at joint i due to velocities at joint j and k. In particular 

  Coriolis force coefficients generated by the 

velocities of joint j and joint k and “felt” at joint i. 

Coriolis force acting at joint i due to velocities at 

joint j and joint k is a combination term of + 

. 

  Centrifugal force coefficient at joint i  

generated due to angular velocity at joint j. the 

centrifugal force acting at joint i due to velocity at 

joint j is given by   

   because the Coriolis force acts at joint i 

due to velocities of joints j and k and suffix order 

does not matter. 

  , Coriolis force at joint i is not due to joint 

velocity itself 

3. The term involving gravity g represents the gravity 

generated moment at joint i. The coefficient Gi is the 

gravity loading force as joint i due to the links i to n. The 

gravity term is a function of the current position. 

4. = generalized force applied at joint i due to motion of 

links. 

5. = joint displacement of joint i. 

6. = velocity of joint i. 

7. =acceleration of joint i. 

In dynamic model equation inertia and gravity terms are 

significant in manipulator control as they affect positioning 

accuracy and servo stability, which in turn determine the 

repeatability of the manipulator. The Coriolis and centrifugal 

forces are significant for high-speed motion of the 

manipulator. 

 

C. Two degree of freedom manipulator with no fixed base 

(Free-floating manipulator) 

 

We have considered smaller systems installed on a 
free-floating unmanned satellite, considered a 
manipulator placed on a satellite having its mass and 
inertia much larger than the manipulator, and 
considered it similar to fixed based manipulator without 
considering the gravitational effect. [16] Any movement 
of the manipulator on satellite will not disturb the 
position or attitude of the satellite.  
The kinetic energy both the links remains same as the one for 

the fixed base manipulator but the potential energy for both 

the link will be zero. 

K1 =   m1 L1
2 1

2 

   (24) 

   (25) 
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K2 =   m2v2
2 +    I2 w2

2 

P1=0 

P2=0 

The Lagrangian-Euler formulation for link1 gives the torque 

 at joint 1 is given by equation (21) and for link 2 it gives 

torque  at the joint 2 is given by equation (22).for derivation 

refer Appendix 1. 

The Lagrangian value is differentiated w.r.t  and  and 

substituted in equation (21) and differentiated wrt  and  

and substituted in equation (22) which gives 

 

=H11 +H12 +C1 

=H21 +H22 +C2 

The general form of equation is 

+ = τ 

H11=  

H12=H21=  

H22= m2  

C1= - L1L2S2 -  

C2=   

IV-CASE STUDY 

Let us consider the Inverse kinematic problem, given two link 

manipulator as shown in the figure 1, having mass, inertia and 

geometry as shown in table 1, chosen circular trajectory  of 

end-effector as  x=a + rcos( , y=b + rsin( , where r = 0.2, 

a = 1.2, b = 1.2 and makes this circular rotation from 0 to 2  

in 10 seconds. 

We will find the toque τ (t) applied at both the joints at 

different time intervals 
Table 1 

2R Manipulator parameters[8] 
 

Link 

Length 

(m) 

Mass 

(kg) 

C.G 

(m) 

Inertia 

(kg ) 

1 1.0 12.456 .773 1.042 

2 1.0 12.456 .583 1.042 

 

Let us consider the point to point trajectory tracking where 

end-effector moves from 0 to 360 degrees in 10 seconds. Here 

we find the orientation for every time, consider the cubic 

polynomial equation [2], 

q(t) = a0 + a1t + a2t
2
 + a3t

3 

deriving equation (28) will give the joint velocity, and 

deriving again will give joint acceleration. 

(t) = a1 +2a2t + 3a3t
2 

(t) = 2a2 + 6a3t 

To solve these equations we require atleast four constraints, 

we consider initial and final velocity as zero, and starting and 

goal-point values. 

q(0) = q
s
 

q(tg) = q
g
 

(0) = 0 

(tg) = 0 

Where q
s
, q

g
 starting and goal-point position and ts and tg are 

initial and final time. 

Applying constraints in equation (28), (29) and (30) gives 

following set of equation, 

a0 = 0 

a1 = 0 

a2 =  

a3 = -  

the value of a2 and a3 after substituting the values are 

a2 = 0.1885 

a3 = -0.0125 

Equation (28) becomes 

q(t) = 0.1885(t
2
) – 0.0125(t

3
) 

calculate q(t) for every change of time and substitute in given 

trajectory  

 x=a + rcos( , y=b + rsin( , considering q(t) = , we get x 

and y values 

The fig.4 generated by MatLab shows the trajectory taken by 

end-effector. 

Now consider the two links and find the initial angle 

 using equation (1) – (4). Which gives two cases 

elbow-up and elbow-down position, 

Case 1:  = 0.3109 and   = 0.7953. 

    (5.1) 

    (27) 

   (26) 

   (28) 

   (29) 

   (30) 
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Case 2:  = 1.1056 and   = -0.7953 

We consider case 2 condition, and we get the following 

results as shown in the figures. Using the values of x and y 

find the value of  ie [ ] which actually gives the linear 

velocity. 

, =  

We know the Jacobian and using equation (9) find the value 

of  or , i.e. 

 =  

Fig.6 gives the angular velocity path 

 

Find s (9) to (10) 

 

 = J(q)  +  

 

Where   is acceleration which is change in velocity. 

=  

 

 
Fig.5 Path taken by the end-effector 

 

 
Fig.6 Computed  using inverse kinematics 

 

 
Fig.7 computed  using inverse Jacobian 

 

 
Fig.8 Computed  and  

 

Using equation (23) we find the values of  of both the joints. 

= (26.2128+14.52*cos( + (5.275+7.26*cos( )  - 

(7.26*sin( * * )-(7.26*sin( * 2)+9.81*(22.084 – 
cos( +7.26*C12). 

= (5.275+7.26*cos( ) + 5.275*  – (7.26* 

sin( *
2
) +(71.238*C12). 

The torque is also calculated without the gravitational force, 

using equation (26) below shows the equations obtained  

= (26.2128+14.52*cos( + (5.275+7.26*cos( )  - 

(7.26*sin( * * )-(7.26*sin( * 2) 

= (5.275+7.26*cos( ) + 5.275*  – (7.26* 

sin( *
2
) 
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Angular velocity 1

Angular velocity 2

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

7www.ijert.org



 
Fig.9 Computed  and  

  Fig.10 Toque without gravitational force 

 

Fig.11 Effect of gravitational force on joint torques 

IV-CONCLUSION AND SCOPE OF FUTURE WORK 

A. Conclusion 
1. In this paper the Dynamic model (EOM) is derived for 

the two degree of freedom serial manipulator. Two cases 

were considered, in one the manipulator is under the 

influence of gravitational force and in another 

gravitational force was not considered as it is freely 

floating in the space.  

2. We have also analyzed the behavior of the torques under 

the influence of various factors like centrifugal force, 

Coriolis force and inertia. 

3. The Lagrange-Euler method is used for building the 

Dynamic equation 

4. From the case studied we found that the final angle of 

both the joints are same as that of initial angle 

5. It was found that the initial and final velocities were zero 

which are as per our requirement. As the velocity was 

increasing linearly and then again decreasing linearly the 

acceleration was also varying which also showed the 

expected results.  

6. Torque is much varying when compared in the presence 

and absence of gravitational force. High torque is 

required for the same body at particular time to move 

particular point in the presence of gravitational force 

where less is required in the absence. 

These suggested that the key to solving the problem of 

planning and control of space robotic system lies in 

understanding the fundamental dynamic behavior of the 

systems. 

B.  Scope of future work 

 

1) We hope that the results encourage the development of 

more effective control algorithm for free-floating space 

manipulator. Further work can be done on the kinematic 

and dynamics of space manipulators. 

2) We can propose generalized Jacobian matrix for space 

manipulator, taking dynamical interactions between the 

arm and satellite into account, it is just an initial step for 

future work on space robots. 

3) The dynamic equations obtained can be used to study 

dynamic behavior of free-flying and free-floating space 

manipulator study in detail during pre-impact and post 

impact operations. 

4) A possible extension for this work would be 

implementation of a dynamic model for a 6 DOF space 

robots. 

 
APPENDIX I 

Derivation without the gravitational force, the Lagrangian   

L= K - P = K1 + K2 – P1 – P2 is obtained by Substituting 

values of equation (15), (16), (19) and (20) in above equation 

. 

L=K1+K2 

 

L =  

   

Lagrange-Euler formulation for link1 is given by 

 

 

                                                                                                             

Diff (A1) w.r.t    and  
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plot of joint toque for 2R Manipulator
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 plot of joint torques without gravitational force
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Diff equation A3 w.r.t time 

 

 

Substituting equation A3 and A4 in A2 will give 

 

 

                                                                                         

 

Similarly for joint 2 

 

                                                                                           

 

                  
 

 

                                                                          
Substituting equation (A6) and (A7) in equation in (A5) 
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