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ABSTRACT 

The effect of imposed time periodic temperature of small amplitude and AC electric 

field on the onset of Rayleigh-Bénard convection in a micropolar fluid is investigated using 

linear stability analysis. A regular perturbation method is used to arrive at an expression for 

the correction Rayleigh number that throws light on the possibility of subcritical motions. 

The Venezian approach is adopted for obtaining eigen value of the problem.  Three cases of 

oscillating temperature field are examined: (a) symmetric, so that the wall temperatures are 

modulated in-phase, (b) asymmetric, corresponding to out-of-phase modulation and (c) only 

the lower wall is modulated. It is observed that the system is most stable when the boundary 

temperatures are modulated out-of-phase. This problem is an example of external control of 

the internal convection.  

1. INTRODUCTION 

 One of the effective mechanisms of controlling convection is through the maintenance 

of a non-uniform temperature gradient which is only space-dependent. However, in many 

practical situations non-uniform temperature gradients find their origin in transient heating or 

cooling at the boundaries, hence the basic temperature profile depends explicitly on position 

and time.  This problem, called the thermal modulation problem, involves the solution of 

the energy equation under suitable time-dependent boundary conditions. These profiles can 

be used as an effective mechanism to control the convective flow by proper tuning of its 

parameters, namely, amplitude and frequency of modulation. There can be an appreciable 

enhancement of heat, mass, or momentum if an imposed modulation can destabilize an 

otherwise stable system. Similarly, if it can stabilize an otherwise unstable system, higher 

efficiency can be achieved in many processing techniques, particularly in solidification 

processes. For example, in crystal growth during solidification of metallic alloys, one can 

consider time-dependent temperature gradient to influence the transport process, thus to 

control the quality and structure of the resulting solid. The thermal modulation can be used as 

a mechanism to delay convection in the case of material processing applications to attain 
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higher efficiencies and to advance it in achieving major enhancement of mass, heat and 

momentum transfer.  

 The pioneer work in this field is due to Venezian [1], who investigated the effect of 

time-dependent heating on the onset of thermal convection in a horizontal fluid layer heated 

from below. Actually, the investigation due to Venezian was motivated by the experiment of 

Donnelly [2], in which, he investigated the effect of rotational speed modulation on the onset 

of instability in fluid flow between two concentric cylinders.  Many authors (Bhaduria [3, 4, 

5], Pranesh and Sangeetha [6], Siddheshwar et. al. [7, 8]) have considered the effect of 

temperature modulation under different conditions to study its effect on the onset of 

convection. 

 In most part of the last century the engineering applications of fluid mechanics were 

restricted to systems in which electric and magnetic fields played no role. In recent years, the 

study of the interaction of electromagnetic fields with fluids started gaining attention with the 

promise of applications in areas like nuclear fusion, chemical engineering, medicine and high 

speed noiseless printing. The investigation of convective heat transfer together with the 

electrical and magnetic forces in non-Newtonian fluids is of practical importance. A 

systematic study through a proper theory is essential to understand the physics of the complex 

flow behavior of these fluids and also to obtain invaluable scaled up information for 

industrial applications. 

 In dielectric fluids with low values of conductivity, the electric effects will essentially 

govern the motion. The forces that are exerted by an electric field on free charges present in a 

liquid are transmitted by collision to the neutral molecules. The fluid will be set in motion, 

thus changing the distribution of charges that in turn modifies the electric field. There is an 

analogy between Rayleigh-Bénard instability and pure electroconvection. In the latter case, 

the destabilizing force is proportional to the mean charge gradient. If alternating electric 

fields of sufficiently high frequency are employed, then Kelvin or polarization body force 

becomes the driving force for convection. 

 Onset of natural convection in the presence of an external electric field has been 

studied by Turnbull [9-11], Turnbull and Melcher[12], Takashima and Aldridge [13], 

Takashima and Gosh[14], Takashima and Hambata [15], Stiles et. al. [16], Ezzat and Othman 

[17], Siddheshwar [18], Siddheshwar and Abraham [19, 20], Siddheshwar and Chan [21], 

Shivakumara et. al. [22, 23], Rudraiah et. al. [24] and Siddheshwar and Radhakrishna [25]. 

 The theory of micropolar fluid introduced by Eringen[26] have become an important 

field of research especially in many industrially important fluids like paints, polymeric 

735

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70350



suspensions, colloidal fluids, and also in physiological fluids such as normal human blood 

and synovial fluids. The mathematical theory of equations of micropolar fluids and 

applications of these fluids in the theory of lubrication and porous media is presented by 

Lukaszewicz [27].   

The Rayleigh-Bénard instability in a horizontal thin layer of fluid heated from below 

is an important particular stability problem. The theory of thermomicropolar convection 

heated from below was studied by many authors Datta and Sastry [28], Ahmadi [29], 

Bhattacharya and Jena [30], Siddheshwar and Pranesh [31 – 35] and Pranesh and Kiran [36].  

The literature pertaining to temperature modulation in micropolar fluid is mainly concerned 

with magnetic field and a corresponding study for micropolar fluid with effect of electric 

field is missing despite its importance in understanding control of convection encountered in 

many scientific and technological problems. 

 Therefore, main object of this paper is to study the effect of imposed temperature 

modulation and electric field on the stability of convective flow in a micropolar fluid by 

considering free-free boundaries. 

   

2. MATHEMATICAL FORMULATION 

 Consider a layer of Boussinesquian, micropolar fluid confined between two infinite 

horizontal surfaces separated by a distance d apart. The uniform AC electric field is directed 

along the z-axis.  A Cartesian system is taken with origin in the lower boundary and z-axis 

vertically upward (see figure 1).     

 

 

 

 

 

 

Figure 1: Physical configuration 

The basic governing equations are: 
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Continuity equation: 

,0q. 


                       (1) 
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                            (3) 

Conservation of energy: 

,TT.
C

q
t

T 2

vo
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








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





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                             (4) 

Equation of state: 

)],TT(1[ oo           (5) 

 

Equation of state for dielectric constant: 

),TT(e)1( 0er           (6) 

Faraday’s law: 

,E

0E








                      (7) 

Equation of polarization field: 

,
E)1(P

0)PE.(

r0

0














          (8) 

where, q


is the velocity , 0  is density of the fluid at temperature T = T0, p is the pressure,   
is the density, g


is acceleration due to gravity,  is coupling viscosity coefficient or vortex 
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viscosity, P


is dielectric polarization, E


 is the electric field,  and   are the bulk and shear 

spin-viscosity coefficients, 


 is the angular velocity, I is moment of inertia, '  and  '  are 

bulk and shear spin-viscosity coefficients, T is the temperature,   is the thermal conductivity, 

  is micropolar heat conduction coefficient,   is coefficient of  thermal expansion,   is 

electrical conductivity, r  dielectric constant, e = 

o
TT

r

T 













 , e  electric susceptibility, 

o  electric permittivity of free space and   electric scalar potential. 

 

The wall temperatures are time dependent, externally imposed and are taken as  

   tcos1T
2

1
T)t,0(T 0             (9) 

    tcos1T
2

1
T)t,d(T 0                 (10) 

where, 
 
is the amplitude of modulation, 

 
is the frequency of modulation and   is the 

phase angle.  

We consider three types of thermal modulation namely:  

 Case (a): Symmetric (in-phase, 0 )  

 Case (b): Asymmetric (out-of-phase,  ) and  

 Case (c): Only lower wall temperature is modulated while the upper wall is held at 

         constant temperature (  i ) 

2.1 Basic State 

The basic state of the fluid is quiescent and is described by: 

),t,z(TT),z(PP),z(EE),t,z(),t,z(pp),0,0,0(q bbbbbb 


                 (11) 

Substituting equation (11) into basic governing equations (1)-(8), we obtain the quiescent 

state solutions as:  

,
z

E
Pg

z

p b
bb

b









                     (12) 

 ,
z

T

z

T

2

b
2

b




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


                              (13) 
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The solution of equation (13) that satisfies the thermal boundary conditions (9) and (10) is 

,ee)(e)(Re
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where       ,
2

d
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2
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
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




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

                  

and Re stands for the real part. 

We now superpose infinitesimal perturbations on this basic state and study the stability of the 

system. 

2.2 Linear Stability Analysis 

The stability of the basic state is analyzed by introducing the following perturbation 

 ,'PPP,'EEE,TTT,','ppp,'qqq bb
'

bbbb


          (17) 

where the prime indicates that the quantities are infinitesimal perturbations. Let the 

components of perturbed polarization and electric field be  '
3b

'
2

'
1 P)z(P,P,P   and 

 '
3b

'
2

'
1 E)z(E,E,E  . 

The second equation of (8), on linearization yields 
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 '
ie0

'
i EP     for i = 1,2 

 '
00

'
3e0

'
3 TEeEP                    (18) 

where it has been assumed that ).1(Te e   

Equation (7) implies one can write '.'E 


 

Substituting equation (17) into equations (1)-(8) and using the basic state equations, we get 

linearized equations governing the infinitesimal perturbations in the form: 

 ,0q. ' 
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                   (25)  

Introducing the electric potential ' , eliminating the pressure p in equation (20) and 

incorporating the quiescent state solution, we obtain the perturbed state vorticity transport 

equation in the form:   
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t
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Using equation (18) on equation (25), we obtain: 

  .0DTeE'1 '
0

2
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The perturbation equations (22), (25), (26) and (27) are non-dimensionalized using the 

following definitions: 

 .
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to obtain the equations governing the infinitesimal perturbation (after dropping the asterisk). 
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The non-dimensional parameters R, L, N1, N2, N3, N5 and Pr are given as 
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
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Pr                      (Prandtl number). 

In equation (31), 

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Equations (29) to (32) are solved subject to the conditions 
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Eliminating T , Ωz and   from equations (28)-(30), we get  
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In dimensionless form, the velocity boundary conditions for solving equation (37) are 

obtained from equations (29) to (32) and (36) in the form: 
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





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  at z = 0, 1.              (38) 

3. METHOD OF SOLUTION 

We now seek the eigen-function w and eigen-values R of the equation (37) for the 

basic temperature distribution (33) that departs from the linear profile 1
z

T0 



 by quantities 

of order  . Thus, the eigen-values of the present problem differ from those of the ordinary 
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Bénard convection by quantities of order  . We seek the solution of equation (37) in the 

form: 

.............)w,R()w,R()w,R()w,R( 22
2

1100                (39) 

The expansion (38) is substituted into equation (36) and the coefficients of various powers of 

  are equated on either side of the equation. The resulting system of equation is 

,0wL 01                                 (40) 
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                      (41) 
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              (42) 

where 

.NNN2N
tPr

N
RNLN

LN)N1(
tPr

1

t
N2N

tPr

N
L

2
511

2
3

22
1

2
0

4
1

2
51

4
1

62
1

2
1

42
1

2
3

2
1











































































    (43) 

 

3.1  Solution To The Zeroth Order Problem 

The zeroth order problem is equivalent to the Rayleigh-Benard problem of Micropolar 

fluid with electric field in the absence of temperature modulation. The linear analysis of 

Rayleigh-Benard convection in micropolar fluid without electric field has been thoroughly 

investigated by Siddheshwar and Pranesh [31].  

The stability of the system in the absence of thermal modulation is investigated by 

introducing vertical velocity perturbation 0w  corresponding to lowest mode of convection as:  

  )mylx(iexp)zsin(w0  ,                             (44) 
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where l and m are horizontal wave number in x and y direction. 

Substituting equation (44) into equation (40) we obtain the expression for Rayleigh number 

in the form  

     
 1

2
3

2
51

22

42
51

42
11

8
1

2
3

0
N2KNKNNaK

aKNLNLaNN1KN2KN
R




 ,                             (45) 

where 222 aK  and 222 mla  . 

 In the absence of the electric field (i.e. L = 0), equation (45) reduces to  

    
 1

2
3

2
51

22

2
11

8
1

2
3

0
N2KNKNNaK

NN1KN2KN
R




 , 

which is the expression for Rayleigh number discussed by [30, 32]. Setting N1 = 0 and 

keeping N3 and N5 arbitrary in the above expression we get 

 
2

6

0
a

K
R  , 

which is the classical Rayleigh- Bénard result. 

3.2 Solution To The First Order Problem 

Equation (41) for 1w now takes the form 

   01
22

1
22

0
4

11 wAKaRfKaRfLawL  ,                                     (46) 

where    2
511

2
31 KNNN2KNA   

If the above equation is to have a solution, the right hand side must be orthogonal to the null-

space of the operator L1. This implies that the time independent part of the RHS of the 

equation (46) must be orthogonal to )zsin( . Since f varies sinusoidal with time, the only 

steady term on the RHS of equation (45) is )zsin(KaR 22
1  , so that 0R1  . It follows that 

all the odd coefficients i.e. 0.........RR 31   in equation (39). 
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To solve equation (46), we expand the right-hand side using Fourier series expansion and 

obtain 
1w  by inverting the operator L1 term by term as 

    
 

 znsine
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22
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where )(g)(A)(g)(A)(B 1n1nn   
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The equation for 2w , then becomes 

  0
22

211
22

0
4

21 wKaRwfAKaRLawL                            (49) 

We shall not solve equation (49), but will use this to determine R2. The solvability condition 

requires that the time-independent part of the right hand side of equation (49) must be 

orthogonal to )znsin(  , and this results in the following equation, 
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where overbar denotes the time average. 

From equation (46), we have, 
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simplifying we get,       
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And finally, 
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where  
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Ni
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n32


 , 

)n,(LA)n,(L 22   and 

)n,(L
*

2   is the conjugate of )n,(L2   respectively. 

 

4. MINIMUM RAYLEIGH NUMBER FOR CONVECTION 

The value of Rayleigh number R obtained by this procedure is the eigenvalue 

corresponding to the eigen function w, which, though oscillating, remains bounded in time. 

Since R is a function of the horizontal wave number a and the amplitude of modulation  , we 

have 

 )a(R)a(R),a(R 2
2

0                 (51) 
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It was shown by [1] that the critical value of thermal Rayleigh number is computed up to 

)(O 2 , by evaluating R0 and R2 at 0aa  . It is only when one wishes to evaluate R4 that a2 

must be taken into account where 2aa   minimizes R2. To evaluate the critical value of R2 

(denoted by R2c) one has to substitute 0aa  in R2, where a0 is the value at which R0 given by 

equation (44) is minimum. 

We now evaluate R2c for three cases: 

Case (a):  When the oscillating field is symmetric so that the wall temperatures are 

       modulated in-phase with 0 . In this case, nn b)(B   or 0, accordingly as n is 

       even or odd. 

Case (b): When the wall temperature field is antisymmetric corresponding to out-of-phase 

      modulation with   . In this case, 0)(Bn  or bn, accordingly as n is even or 

      odd. 

Case (c): When only the temperature of the bottom wall is modulated, the upper plate being 

       held at constant temperature, with  i .In this case, 
2

b
)(B n

n  , for integer 

       values of n.  

where 
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The variable   defined in equation (15), in terms of the dimensionless frequency, reduces to 
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Hence from equation (50) and using the above expression of )(Bn  , we can obtain the 

following expression for R2c in the form 

          
 





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
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

2
2

22
2

n
2

22
n

2
0

4

2

2
0

2

c2
n,L2

n,Ln,LBA
KaRLa

K2

KRLa
R       (52) 

In equation (52) the summation extends over even values of n for case (a), odd values of n for 

case (b) and for all values of n for case (c).The infinite series (51) converges rapidly in all 

cases. The variation of R2c with   for different values of N1 , N3, N5  L and Pr are depicted in 

figures (2)-(7). 

Results and Discussions: 

In this paper, an analytical study is made on the effects of temperature modulation and 

electric field on the onset of convection in a horizontal layer of a micropolar fluid. The 

expression for the critical correction Rayleigh number R2c is computed as function of the 

frequency of the modulation  and for different parameters.  The value of R2c  has been 

calculated for the following three cases; (a) when the wall’s temperature is modulated in-

phase i.e., 0 , (b) when the wall’s temperature is modulated out-of-phase, i.e.,  and 

(c) when only the lower wall temperature is modulated, the upper wall is held at constant 

temperature, i.e.,  i .  

 The analysis presented is based on the assumption that the amplitude of the 

modulating temperature is small compared with the imposed steady temperature difference.  

The validity of the results obtained here depends on the value of the modulating frequency  . 

When 1 , the period of modulation is large and hence the disturbance grows to such an 

extent that it makes finite amplitude effects important. When  , 0R
c2
 , thus the 

effect of modulation becomes small.  In view of this, we choose only moderate values of  in 

our present study.  

 The results have been presented in figures (2)-(15). From the figures it is observed 

that the value of R2c may be positive or negative. The sign of R2c characterizes the stabilizing 

or destabilizing effect of modulation. A positive R2c means the modulation effect is 
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stabilizing while a negative R2c means the modulation effect is destabilizing compared to the 

system in which the modulation is absent.  

 The effect of in-phase modulation of wall temperature on the onset of convection in  a 

horizontal layer of micropolar fluid with electric field is shown in figures (2) – (7) for 

different values of coupling parameter N1, inertial parameter N2, coupling parameter N3, 

micropolar heat conduction parameter N5, electric Rayleigh number L and Prandtl number Pr. 

From these figures, we find that for low frequency γ, R2c becomes more and more negative 

indicating that in-phase modulation for low values of γ  is destabilizing and for moderate 

values of γ, R2c becomes less and less negative indicating that in-phase modulation for 

moderate values of γ is stabilizing. Let γc be the frequency at which the R2c changes from 

destabilizing to stabilizing, then the modulated system may be classified as destabilizing or 

stabilizing according as γ < γc or  γ > γc when compared with the un-modulated system.  For 

some particular value of γ, R2c becomes zero.  This is due to the fact that when the frequency 

of modulation is low, the effect of modulation on the temperature field is felt throughout the 

fluid layer.  If the plates are modulated in-phase, the temperature profile consists of the 

steady straight line section plus a parabolic profile which oscillates in time.  As the amplitude 

of modulation increases, the parabolic part of the profile becomes more and more significant.  

It is known that a parabolic profile is subject to finite amplitude instabilities so that 

convection occurs at lower Rayleigh number than those predicted by the linear theory.  From 

the figures (2) – (7) for in-phase modulation the following points are noted: 

Figure (2) is the plot of correction Rayleigh number R2c versus frequency of modulation γ 

for different values of electric Rayleigh number L in respect of in-phase modulation. The 

electric Rayleigh number L is the ratio of electric force to gravitational force. We see from 

the figure when L is greater than 1803 super critical motions occur and R2c increases with an 

increase in L at a given frequency  . Hence L has a stabilizing effect on the flow. When L is 

less than 1803 subcritical motions occurs. It is also interesting to see from the figure that for a 

given L (L<1803), R2c first decreases with increase in  , reaches a minimum and then 

increases with increase in   and for a given L (L>1803) R2c increases with increase in   

reaches the maximum and then decreases with increase in  . This shows that for a weak 

dielectric fluid, the flow is destabilized for small values of   and stabilized for large values 

of  . This is due to the fact that when the frequency of modulation is low, the effect of 

modulation is felt throughout the fluid. 
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Figure (3) is the plot of correction Rayleigh number R2c versus frequency of modulation γ 

for different values of coupling parameter N1 in respect of in-phase modulation.  We observe 

that as N1 increases, R2c increases in negative direction.  The increase in N1 implies increase 

in the concentration of suspended particles. These suspended particles consume the greater 

part of the energy in forming the gyrational velocity and as a result R2c becomes more and 

more negative. 

Figure (4) is the plot of correction Rayleigh number R2c versus frequency of modulation γ 

for different values of inertia parameter N2 in respect of in-phase modulation.  Increase in N2 

is representative of the increase in inertia of the fluid due to the suspended particles.  Thus, as 

is to be expected, we find that as N2 increases R2c becomes less and less negative thereby 

stabilizing the system. Since N2 essentially arises with the acceleration term, it does not have 

any influence on Roc.  It influences only R2c. 

Figure (5) is the plot of correction Rayleigh number R2c versus frequency of modulation γ 

for different values of couple stress parameter N3 in respect of in-phase modulation.  The role 

played by the shear stress in the conservation of linear momentum is played by couple stress 

in the conservation of angular momentum equation.  Increase in N3 signifies decrease in 

gyrational velocities.  Hence, as N3 increases, we observe that R2c becomes less and less 

negative. 

Figure (6) is the plot of correction Rayleigh number R2c versus frequency of modulation γ 

for different values of micropolar heat conduction parameter N5 in respect of in-phase 

modulation.  An increase in N5 implies that the heat induced into the system also increases 

resulting in reduced heat transfer from bottom to top.  As a result, we find from the figure that 

as N5 increases R2c increases in negative direction.  

Figure (7) is a plot of R2c versus γ, for different values of Pr for in-phase modulation. It is 

observed that as Pr increases R2c increases in negative direction. It can be inferred from this 

that the effect of increasing the concentration of the suspended particle is to destabilize the 

system. This means that the fluids with suspended particles are more vulnerable than clean 

fluids to destabilization by modulation. It is appropriate to note that Pr does not affect the R0 

part of R.  

The effect of out-of-phase modulation on the wall temperature on the onset of convection 

is shown in figures (8) and (9).  It is found that R2c is positive for out-of-phase whereas it is 
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negative for in-phase. Thus N1 and L have opposing influences for in-phase and out-of-phase 

modulations.  The above results are due to the fact that in the case of out-of-phase modulation 

the temperature field has essentially a linear gradient varying in time, so that the 

instantaneous Rayleigh number is supercritical for half a cycle and subcritical during the 

other half cycle.  

The above results on the effect of various parameters on R2c for out-of-phase modulation 

do not qualitatively change in the case of temperature modulation of just the lower boundary.  

This is illustrated in the figures (9) and (10). 

From the study following conclusion can be made: 

1. The system is more stable when boundary temperature are modulated in out-of-phase.  

2.  In-phase temperature modulation leads to subcritical motions. 

3. The results of the study throw light on an external means of controlling the internal 

convection with electric field, either advancing or delaying convection by temperature 

modulation in a micropolar fluid. 

4. The suspended particles scale down the effect of temperature modulation. 
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