
The Impact of Cloud Based IDEs on Programming

High Level Languages for Educational Purposes

on Mobile Devices

1
Chikwiriro Hilton,

2
Chaka Pharaoh, and

3
Mavhemwa Prudence M

Computer Science Department

Bindura University of Science Education, Zimbabwe

Bindura, Zimbabwe

Abstract—

An Integrated Development Environment (IDE) is a

platform which provides tools which enable software to

development on a web browser using mobile devices such as

smart phones and tablets which have an internet connection

instead of just the usual traditional desktop. The web provides a

generic user interface and can also allow for real time

collaboration among different users from different locations.

This paper discusses the impact that is brought about by the use

of cloud base…….d .IDEs in educational setting as a direct

result of the improved student participation and collaboration,

and also practice which could be due to the cloud IDEs highly

availability.

Keywords—

Integrated Development Environment (IDE);

Cloud

server; cloud based IDE;

 Real time collaboration; language editor

I.

INTRODUCTION

Traditional programming in education relies on
programming environments deployed on lab machines, which
can be a tedious process at odds with the speed of
developments in these tools. While software development
environments on the Web may be an appealing vision, it is
far from being simple since moving IDEs to the Web is not
just a matter of porting desktop IDEs, a fundamental
reconsideration of the IDE architecture is necessary in order
to realize the full potential that the combination of modern
IDEs and the Web can offer [10]. Issues of network latency
will also come into play since the code editor and the
compiler running on the server will need to be maintaining
asynchronous communication.

II.

DEVELOPING WEB APPLICATIONS

There are some fundamental differences when designing
and implementing an application which will run on the web
compared to classical desktop applications. In typical web
applications the actual work is done remotely on a web-server
or the cloud where the user is presented with a user interface
built in HTML. Through the use of GET/POST requests or
AJAX communication is handled from the client to the
server. This communication layer with the back-end is
arguably where most differences between desktop and web
applications lie because of its inherent asynchronous nature.

At the server side a programmer has virtually unlimited
options in which he implements the web application back
end. However at the client side the web application has to be
presented in a web browser. Currently this means the
implementation is bound to only use flavours of (X)HTML,
CSS and JavaScript. Even though many Web applications
have been created by software developers, there currently are
few web applications which provide the necessary tools to
actually create applications with. The small amount of tools
which do exist, such as CoRED [23] and Cloud9 1, are
fundamentally limited in the sense that they only support a
select set of languages. Even though Cloud9 supports
language plug-ins, these plug-ins still have to be implemented
specifically for that platform (in JavaScript) and are mainly
implemented using regular expressions which make
sophisticated editor feedback impossible.

Over the last decade, the dizzying expansion of the online
universe and the growing sophistication of web browsers
have turned the Internet into the greatest repository of
information in history. At the same time, the increased
availability of mobile devices has brought the resources of
the Internet to many more people throughout the world. [24]

ran a cover story describing mobile devices as the next killer
app for the developing world, citing a growing body of
evidence that the mobile devices are the technology with the
greatest impact on development. Thus to make this transition
of devices, from PCs to mobile devices meaningful, it means
finding a way to make applications and hence IDEs portable
and platform independent, therefore in this report we seek to
show that making the IDEs web based is the way to go.

About five decades ago, the first IDE was introduced,
targeting the BASIC language [25]. The IDE was purely
command-based, and therefore did not look much like the
menu-driven, graphical IDEs prevalent today. Still, it
integrated source code editing, compilation, debugging, and
execution in a manner consistent with a modern IDE. Over
the past five decades, desktop IDEs have become mature and
are now prevalent in modern software engineering. Even
though many IDEs frameworks currently exist such as
Eclipse[3], Netbeans and VisualStudio, most IDE
implementations are mainly targeted at a small fixed set of
programming languages. They provide tools for working with

780

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

a wide range of languages, combined with facilities for
version management, issue management, and so on.

III. SOFTWARE DEVELOPMENT IN CONTEXT OF DESKTOP

IDES

Software development and maintenance is a highly

collaborative effort. The crucial role of efficient and precise
communication between developers, developers and testers,
and developers and end-users is well-known. It is also an
accepted truth that developers tend to follow the path of least
resistance. If the tools at their disposal make collaboration
difficult, collaboration will happen less, or not at all. Despite
the many accomplishments and innovations of desktop IDEs,
they still operate within the constraints of the desktop
paradigm: individual developers work on separate machines,
requiring the installation, configuration, and maintenance of
separate IDE instances for each developer. None of the major
IDEs provide realtime collaborative features to mitigate this
problem—even though technology for doing so exists [26].

In the light weight code editing widgets we find code

editors without syntactic or semantic services[27], or with
just minimal regular expression based syntax highlighting
[14]. These tools can be useful for coding small programs,
and in the form of widgets they provide ample opportunity
for mashups. As an example, WeScheme [18] is an
educational programming environment, embedding
CodeMirror[14] for syntax highlighting and bracket
matching. However, while these widgets can be useful tools
for coding small programs, they do not provide a
comprehensive environment with all the facilities that are
especially important for productivity in larger projects. They
also do not offer any support for collaboration.

In the general case, the web browser cannot act as a

runtime for the program under development. The web IDE
must be connected to some form of runtime provider where
the developer can execute the program under development as
part of the edit-compile-run cycle. That is, the runtime
provider becomes a Web service employed by the web IDE
[28].

Can a web IDE support offline mode one would ask. Most

web applications simply do not support offline mode, and for
some developers, especially Web developers, that is perhaps
acceptable also for web IDEs[29]. Even for other types of
developers, one must consider how much of their working
time is spent offline? What will that figure be in five years?
Given developers’ reliance on documentation, search engines
and collaboration, can one really be productive offline
anymore? Even if offline mode is ultimately necessary, one
could argue that offline support should be limited to a subset
of the full capabilities, starting with only what is necessary
for the edit-compile-run cycle [29].

For pragmatical and economical reasons, the web IDE

must integrate well with the significant amount of high-
quality developer tools already in use[5], such as continuous
integration or continuous deployment, issue trackers, version
control, static analysis tools. Many of these are on the Web,
and already provide a web service API; they are online
services designed for integration with other online services.

The other tools must become services by acquiring a web
service API. Interoperability requires the web IDE to provide
a plugin architecture. The plugins must be able to call out to
external web services, and to provide the necessary user-
interface elements for these services. While the desktop IDE
is often a collection of plugins running in the same process,
the web IDE is a collection of distributed services connected
through web services APIs.

There is a cause for concern when we talk of productivity

and web based IDEs. On this issue that is when the desktop
counter parts seem to gain headway over the web based IDEs.
Literature says web based IDEs might be beneficial where
productivity is concerned. Experience from other online
services indicates that online services can shield the users, in
this case the developer, from the configuration specifics in
the runtime environment. The developer can spend less time
on installation and configuration of the tools, and more time
on development. The daily maintenance which involve,
upgrades, backups, redundancy and scaling is handled by
dedicated personnel, and the costs are amortized across all
users. [28] argue that web based IDEs might be harmful to
productivity, by saying any network or cloud provider
outages, or takedowns due to legal disputes, will impact the
developer severely since there will likely be no backup or
offline alternative. The other important factor is that of lack
of control of the platform [26] which makes it difficult, or
even impossible, to work around bugs and regressions and
the developer might not be able to control when and how
upgrades to the IDE should happen.

IV. ONLINE COLLABORATION

The Web was conceived as tool for collaboration, and
most of the services and techniques developed for the Web
are there to facilitate collaboration. Here we consider the
potential impact of these services and techniques in the
context of IDEs. When all developers are online, how does
team collaboration change? A number of Web 2.0
applications, such as Google Docs and Wave, have shown
that collaboration changes when the participants interact in
real-time, on the same document. These applications
emphasize synchronous collaboration combined with
versioning. They use the connectiveness of the cloud
combined with novel synchronization algorithms such as
Fraser’s differential synchronization algorithm [30]. Using a
realtime connection between clients, every change to a model
is reflected from the client to all other active developers
working on the same model. By contrast, current desktop
IDEs tend to use asynchronous collaboration, where each
developer works in their own instance taken from a canonical
master copy. Eventually they merge their changes into a new
master copy.

Collaboration and version management is an area with a

wide range of variability. The connectivity and the centrality
of configuration of the cloud makes it an excellent platform
to investigate different models. Fully synchronous
collaboration is highly effective for editing documents and
can facilitate pair programming, but it may not scale to
software development projects with more programmers
editing and debugging at the same time. One direction for
new approaches to online collaboration is to use the

781

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

language-specific facilities of the online IDE. With many
developers working at the same time, one scenario that
should be avoided is synchronous collaboration of invalid or
incomplete source code. With a language-aware IDE, source
code can be checked for syntactic and semantic correctness,
and even tested, before merging [31]. Speculative merging
and checking of source code could be the basis of new hybrid
models between fully synchronous and asynchronous
collaboration. Other online services relevant for online
collaboration include any communication channels
incorporated into the IDE, in particular issue trackers.
Current issue trackers tend to be loosely integrated into the
development process. With a fully integrated environment,
issue reports could include a versioned snapshot of issues
encountered by other developers, or a representation of the
runtime state or issues reported by users.

V. DISCOVERY AND RECOMMENDATION

Understanding the source code of a software project is
key to efficient software development. Developers navigate
the code and documentation to discover its functions, and to
learn and follow the architecture and design patterns
established for a project. Experience with recommendation
engines show that they can be effective tools for helping
users navigate many types of content, including source code
[20]. As source code is increasingly being placed online
under various open licenses, the collective corpus at our
disposal for automated mining and indexing is increasing
rapidly.

Zeller predicts that discovery and recommendation
systems will eventually offer ―[...] automated assistance in all
development decisions for programmers and managers alike:
"For this task, you should collaborate with Joe, because it
will likely require risky work on the Mailbox class."‖[22].
Data extracted from mining software repositories can be used
for a number of purposes, including API usage
recommendation [31],for example what are the typical
protocols that clients of an API use, bug prevention, which
are based on historical bugs, which parts of the source code is
more likely to have new bugs [32], structural code search, for
example show me calls to wait and notify that are not
protected by a synchronized block[33] ; automated bug
detection, by using static analysis tools such as
FindBugs[12].

How exactly will moving to the web change discovery

and recommendation. In the Web-based development
environment, all the source code is by necessity online. It is
collected in centralized repositories, and is increasingly
available under open licenses. This simplifies indexing and
mining substantially. Measuring the accuracy of
recommendation engines is dependent on data from the
developers’ workspace. User tracking is a basic building
block for most modern web applications. Privacy concerns
notwithstanding, it is relatively trivial to instrument the web
IDEs to track the activity of developers, and thus quickly
collect the necessary data needed to tune degrees-of-interest
models and thus improve the recommendations. Web-based
issue trackers have provided service APIs for some time. This
makes it relatively easy to mine and index bug history. Such
mining may be used to continuously tune tools for automated
bug detection to weed out false positives.

 Then looking at another area of concern one would ask
the question, then, what happens to the plugin model in a
Web-based world? The plugin model is the big enabler of
integrated development environments on the desktop. While
there are many distributed component models [34], the
typical component models used in IDEs are designed to
operate only in a single process. In even the simplest of web
IDEs, some plugins must execute on the server, and some in
the web browser, thus requiring a distributed component
model. This change has rippling effects such as every API
call might be a remote call, and must be dealt with on a case-
by-case basis. Actual remote calls must be handled using
asynchronous programming techniques. The synchronous
plugin model might still work well for logic that will only
execute in the browser, or only inside a single process on the
server. For everything else, it is customary to think of it as a
Web service –

a chunk of functionality provided by a remote

machine.

 Consequently, the web IDE will require a

solid,
distributed service model. This model must ensure
interoperability across processes, across servers, across cloud
providers, across implementation languages, and across
geographical locations and timezones. It must support API
versioning and system

upgrades, so that new versions of

components can be provided to a large audience. The design
of the service model of the web IDE will set the stage for
how open, extensible and centralized a given web IDE is. A
restrictive model is likely to promote walled gardens where a
flexible model might dissuade the formation of the same
gardens.

 The open ecosystem of the desktop world has served us

very well by fostering innovation and allowing competition
on all levels. An important reason why the Internet won out
over the thousands of alternative networks of the past, is that
openness was architected into the Internet from the beginning
[35]. On a technical level, the software development
environment should be capable of supporting multiple
languages through some

form of plugin architecture, and the

plugin architecture should be designed so that the end-users,
the developers, are in control of the IDE they use. We want
the web IDE to be a mashup where users can add in new
components, also third party ones, as they

see fit. If we only

consider the client-side, this is a problem with a number of
known solution patterns [36]. Components requiring a server-
side component present additional challenges. Examples of
these include the semantic components such as type checking
and code navigation, which both require access to the entire
source code of the program; language-specific execution
environments that require a more powerful runtime than what
is offered by the JavaScript VM in the browser, and that must
be able to run arbitrary code provided by the end-user; and,
platform specific deployment systems that might need to run
native executables in order to communicate with remote
services.

 Where should the server-side code run? How does a web

IDE provider, deal with the

security issues related to running

third-party code on their servers? How does he track and bill
the users for the resources consumed by third-party
components? The web IDE provider might offer a server-side

782

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

sandbox, for example in the style of Google App Engine.
Third party components must be written to be compatible
with this sandbox, which could then be designed more like a
traditional desktop plugin-model, albeit with stricter resource
control and potentially by separating each plugin into its own
process space [12].

Another possibility is to require every component-

provider to host the server-side part of their plugin, and
expose it using an agreed-upon web service API. This API
might then be forwarded to the client so that the server side
processing is offloaded to a third party cloud, potentially a
different one for every third party component. This presents
challenges related to latency, authentication and security,
harmonization of service-level agreements across
components, and design of the interoperability protocols
required between components. A third, hybrid model, is to
allow both, and also to allow developers to host third-party
plugins on their own hardware, and register these as services
with their web IDE provider. A fourth variant is the fully
peer-to-peer system with no central authority. This presents
significant challenges with regards to trust. Either the
computational nodes must perform obfuscated algorithms on
obfuscated data, or the users must be able to trust each other
to keep each other’s data safe. The model that becomes
prevalent in the end will have an impact on the openness of
the web IDE concept in general, and a number of social
questions, such as: Who gets to decide which components
and therefore which languages should be allowed? Even if
you provide free-of-charge service for your new language,
how are you going to get others to use your new language if
they’re all on a walled up web IDE? Is the service model
fundamentally inclined towards censorship, thus easily
disallowing languages of the competition?

What are the implications for innovation of programming

languages, IDEs, and language workbenches? Given that
these technical issues are resolved, the remaining social or
commercial aspects are largely a matter of policy, some web
IDE providers will be open to integration with third party
plugins, other will not. Experience from other walled
gardens, such as mobile app stores, suggests that we might
end up with a spectrum of openness among web IDE
providers. Research and innovation is likely to thrive on the
providers that are placed more toward the open end of the
spectrum. In a market where users demand services,
providing the software behind the service is suddenly not
only feasible, but a now established way of gaining
credibility and popularity with the user base. Just as was the
case with Eclipse, this is likely to benefit the research
community, as the basic infrastructure will be freely available
to build on[34]. What if something breaks at the web IDE
service provider? This is more of a pragmatic issue. Upgrades
and system changes often result in regressions.

By hosting the IDE on the Web, the developer gives up a

control over when and how potentially devastating upgrades
should happen. While it is often possible to track down and
come up with workarounds to upgrade problems on your
local machine, or to roll back, doing the same for a web
service is often impossible. Outages and regressions are
usually covered legally by service level agreements, but
experience shows that even the biggest and most reliable

service providers with the strictest SLAs can go down for
days—and may have faulty backups [34]. By hosting the web
IDE on multiple, different cloud providers, in different
versions, or by designing the IDE around a decentralized
peer-to-peer architecture, it might be possible to mitigate this
problem somewhat, since an old (presumably working)
version is then likely to be around, and available.

VI. RESEARCH METHODOLOGY

A. Research designs, data collection and
approaches

The research was implemented at Bindura University of
Science Education in the Computer Science Department. The
research provided a platform for the learning and practising
of programming languages in particular Java, HTML, C++, C
and C Sharp, by making use of the web based integrated
development environment which we implemented in the
quest to achieve our objectives.

B. System design

 The Web based IDE is a tool for developing programs on
the web, these are IDE which can be accessed through a
browser, and there is also need for an internet connection. For
the system to be able to support many different languages, we
had to integrate the CodeRun studio which supports C#.net,
as well as HTML, CSS, Javascript, e.t.c and the eXo cloud
IDE that supports Java programming.

Fig : 1 The Cloud based IDE

 The users would write their code and the interface
would then direct the code to the right IDE on the cloud
server depending on the language that would have been used.
The basic features that we have are user registration and
login.

783

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

 Figure 2: The language editor

 To do programming on our website, a user had to log

in, and would be taken to the home page. In the home page
user had to choose their preferred programming language of
choice from a menu bar on top of the web page. The menu
bar is in form of links which lead either to the java editor, C#
editor, C++ editor or C editor and the HTML editor. Since
this editor could run HTML thus by default it runs all the
languages that run in a browser that is Cascading Style Sheets
and javascript. Our html editor uses event listeners thus it
displays results in the results console as the user is editing
their code, more like auto compilation and running.

 The platform also had other features like saving,

deletion, editing, compilation and execution of programs.
Once the execute button was hit the code was submitted to
the server for processing that is the compiling and running of
the code then the result is send back to the results console.

 The platform also catered for real time collaboration

which is whereby, multiple different users are allowed to edit
the same program from different mobile devices if given the
permission by the creator of the program. To cater for this
facility, there was need to store a backup copies for the user
who created the program. Only a single user would be
allowed to edit a program at a given time, but his/her editing
would be visible to all other users. The platform also allowed
users to have private chat and a public discussion forum.

C. Research instruments

The participants of this study were computer science

students at the Bindura University of Science Education,
Computer Science Department who were doing programming
courses Introduction to Programming and also Data

Structures and Algorithms. The sample size used was 40
students. Questionnaires, observations and mock tests were
the instruments used in this research project. The collected
data was analysed using SPSS. The web based IDE was
deployed on the Bindura University of Science Education e-
learning website where it was accessible by students via the
internet. The research provided a platform for students to
practice their programming on their smart phones, tablets and
other small mobile devices.

VII. RESULTS AND ANALYSIS

A. Analysis of data and interpretations of results

The questionnaire contained only closed questions. A
total of four closed questions, in the form of positive and
negative statements to agree or disagree with, were asked.
Each closed question used a five point Likert response scale
where each scale point was defined and the results obtained
were as follows:

Fig : 3 The Is the cloud based platform useful?

 All More than 70% of the students found the web IDE

was useful as a platform for coding, compiling, debugging
and executing programs although it had less functionality
than the desktop IDE. 30% of the students said it was not
useful; this might be attributed to the fact that the cloud based
IDE did not show output results for graphical objects. 85% of
the students found the system to be more convenient than the
usual desktop IDE. The fact that everywhere where smart
phones could be used made it more convenient and highly
available.77.5% of the students thought that the private chat
and the public forums were very helpful in both situation
where students may need to feel anonymous and also in
situation where they would need collective help from other
students. 95% of the student agreed that the real time
collaboration feature was a very useful feature whilst 5% did
not.

ANOVA
Score

Sum of

Squares

df

Mean
Square

F

Si
g.

Between
Groups

1221.025

1

1221.025

5.
333

.0
26

Within
Groups

8700.950

38

228.972

Total
 9921.975

39

784

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

An analysis of the students scores from the mock tests
was also performed.

Report

Score

Gro
up Mean N Std. Deviation

1 72.05 20 15.343

2 61.00 20 14.917

Tota
l

66.52 40 15.950

Table : 1 shows comparisons of student scores using ANOVA and

mean scores

 With the following Hypothesis stated i.e:

H0: Use of the cloud based IDEs on mobile devices has no

effect on the programming skills of students.
H1: Use of the cloud based IDEs on mobile devices has an

effect on the programming skills of students.

Since the P-value from the ANOVA is less than 0,051, I

fail to accept H0 and conclude that the use of cloud based
IDEs on mobile devices has an effect on the programming
skills of students. Also from the observations made by the
instructor through checking the system records, students
spent quite a lot of time coding on the platform and also the
discussions and participation were very encouraging.

VIII. CONCLUSION AND RECOMMENDATIONS

AND FUTURE WORK

The results indicated that the web based IDE can be used

as a close substitute to the desktop IDE in programming high
level languages for educational purposes. The system
improved the student’s practice and participation time
because it could be used anywhere and in particular in places
where other devices such as laptops and desktops cannot be
used. Therefore this system can improve greatly the student’s
programming skills since these can be improved mainly
through practice. Also through the real time collaboration and
the private and public discussion forum, students could get
the necessary help they required. This in turn made
programming a lot less difficult.

There is need to include as much graphical output objects
as much as possible for compatible devices but also being
very careful to cater for the non compatible devices as these
days smaller devices are getting more powerful by the day.

REFERENCES

[1] J. Nielsen, “Designing Web Usability: The Practice of Simplicity”,
New Riders Publishing, 2000.

[2] T. Berners-Lee, L. Masinter, M. McCahill, et al. Uniform resource

locators (url). CERN, 1994.
[3] E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns,

and Plugins. Addison Wesley Longman Publishing Co., Inc., 2003.

[4] M. Goldman, G. Little, and R.C. Miller. Collabode: collaborative
coding in the browser. In Proceeding of the 4th international workshop

on Cooperative and human aspects of software engineering, pages 65–

68. ACM, 2011.
[5] Z. Hemel and E. Visser. Mobl: the new language of the mobile web. In

Proceedings of the ACM international conference companion on Object

oriented programming systems languages and applications companion,
pages 23–24. ACM, 2011.

[6] T. OReilly. What is web 2.0. Design patterns and business models for

the next generation
[7] of software, 30:2005, 2005.

[8] A. Russell. Comet: Low latency data for browsers. alex. dojotoolkit.

org, 2006.
[9] Lucas, H.C., Jr. "Performance and Use of an Information System,"

Management Science, Volume 21, Number 8, April 1975, pp. 908-919.

[10] Lennart C. L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and
Eelco Visser. Software development environments on the web: A

research agenda. In Proceedings of the 11th SIGPLAN symposium on

New ideas, new paradigms, and reflections on programming and
software (Onward 2012). ACM Press, 2012.

[11] Pearson, J., and Pearson, A. ―An Exploratory Study into Determining

the Relative Importance of Key Criteria in Web Usability: A Multi-

criteria Approach,‖ Journal of Computer Information Systems, (48:4),

2008, 115-127.

[12] N. Ayewah and W. Pugh. The google findbugs fixit. In P. Tonella and
A. Orso, editors, Nineteenth Int. Symposium on Software Testing and

Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, pages 241–252.

ACM, 2010.
[13] Cloud9 IDE. http://www.cloud9ide.com/ .

[14] CodeMirror. http://codemirror.net/ , Apr. 2012.
[15] CodeStore Inc. Coderun. http://coderun.com, 2010

[16] Z. Hemel and E. Visser. Declaratively programming the mobile web

with mobl. In K. Fisher and C. V. Lopes, editors, 2011 Int. conference
on Object oriented programming systems languages and applications,

OOPSLA 2011, pages 695–712. ACM, 2011.

[17] M. Labs. Mozilla labs: Skywriter, 2010.
[18] D. Yoo, E. Schanzer, S. Krishnamurthi, and K. Fisler. WeScheme: The

browser is your programming environment. In Conference on

Innovation and Technology in Computer Science Education, 2011
[19] Narcissus. http://mxr.mozilla.org/mozilla/source/js/narcissus/ , Apr.

2012.

[20] [19] M. Robillard, R.Walker, and T. Zimmermann. Recommendation
systems for software engineering. IEEE Softw., 27(4):80–86, July 2010.

[21] The Eclipse Foundation. Voidspace – python in your browser with

silverlight.
http://www.voidspace.org.uk/ironpython/silverlight/index.shtml.

[22] A. Zeller. The future of programming environments:

Integration,synergy, and assistance. In L. C. Briand and A. L.
Wolf,editors, Int. Conference on Software Engineering, ISCE

2007,Workshop on the Future of Software Engineering, FOSE 2007,

May 23-25, 2007, Minneapolis, MN, USA, pages 316–325, 2007.
[23] J. Lautam\"aki , A. Nieminen , J. Koskinen , T. Aho , T. Mikkonen , M.

Englund. CoRED: browser-based Collaborative Real-time Editor for

Java web applications . Conference on Computer Supported Cooperative
work pages 1307-1316 ACM 2012.

[24] [Economist05] The Economist. The real digital divide: Encouraging the

spread of mobile phones is the most sensible and effective response to
the digital divide. 10 March 2005.

http://www.economist.com/node/3742817?story_id=3742817

[25] Kemeny, John G. & Kurtz, Thomas E. (1985). Back to BASIC: The

History, Corruption and Future of the Language. Addison-Wesley

Publishing Company, Inc. ISBN 0-201-13433-0.

[26] L.-T. Cheng, C. R. B. de Souza, S. Hupfer, J. Patterson, and S. Ross.
Building collaboration into IDEs. Queue, 1(9):40–50, Dec. 2003

[27] http://www. processingjs.org

[28] Lennart C. L. Kats, Eelco Visser: The spoofax language workbench:
rules for declarative specification of languages and IDEs. OOPSLA

2010: 444-463

[29] L.C.L. Kats (2011): Building Blocks for Language Workbenches , Delft
 December 13, 2011

[30] N. Fraser. Differential synchronization. In U. M. Borghoff and B.

Chidlovskii, editors, 2009 Symposium on Document Engineering,
Munich, Germany, September 16-18, 2009, pages 13–20. ACM, 2009

[31] Jungloid mining: helping to navigate the API jungle D Mandelin, L Xu,

R Bodík, D Kimelman - ACM SIGPLAN Notices, 2005

785

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

[32] Graves, T. L., A. F. Karr, J. S. Marron, and H. Siy (2000). Predicting

fault incidence using software change history. IEEE Transactions on
Software Engineering, vol. 26, number 7, pp. 653-661.

[33] E. Linstead*, S. Bajracharya*, T. Ngo*, P. Rigor, C. Lopes, P. Baldi.

Sourcerer: Mining and Searching Internet-Scale Software Repositories.
Data Mining and Knowledge Discovery. Volume 2, Number 18. April

2009.

[34] K.-K. Lau and Z. Wang. Software Component Models. IEEE
Transactions on Software Engineering. 2007 October; 33/10: 709-724.

eScholarID:1a5875 | DOI:10.1109/TSE.2007.70726

[35] L. Lessig. Code and Other Laws of Cyberspace. Basic Books, Inc., New
York, NY, USA, 2000.

[36] L. Grammel and M.-A. Storey. The smart internet. chapterA survey of

mashup development environments, pages 137– 151. Springer-Verlag,
Berlin, Heidelberg, 2010.

786

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040322

International Journal of Engineering Research & Technology (IJERT)

