
 

 

The Role of Software Puzzle in Overcoming the 

Denial of Service Attacks  
 

Advancement of Client Puzzle 

 
   Ashish Chinnappa T M                 Aishwarya K                       Dheeraj R Makam            Ms. Nirmala S, Associ. Prof 

Dept. of CSE ,AMCEC              Dept. of CSE,AMCEC                    Dept. of CSE,AMCEC            Dept. of CSE,AMCEC 

  

  

 
Abstract—some of the major threats to cyber security are 

Denial of service and Distributed Denial of service attacks. In 

order to overcome these attacks, the present system incorporates 

the client puzzle which mandates the client to perform various 

complicated operations before being granted requested services 

from the server. However, an attacker makes use of various fast 

puzzle solving software and/or built-in graphics processing unit 

(GPU) hardware to suppress the potential of client puzzles. Also, 

the puzzle algorithms generated in advance by the client puzzle 

are not dynamic and hence an attacker can prepare an 

implementation to solve the puzzle in advance. In this paper, we 

study how to prevent these attacks by introducing an 

advancement of the existing client puzzle called as Software 

puzzle. In this scheme, once the server receives the request from 

the client, a puzzle is generated randomly. Thus, an attacker has 

to put in considerable effort in translating the CPU puzzle 

software to its functionally equivalent Graphical Processing Unit 

such that the translations are complex and cannot be done in 

real time.   

Keywords—Software puzzle, code obfuscation, GPU 

programming, distributed denial of service (DDoS) and denial of 

service (DoS). 

I. INTRODUCTION 

  

Denial of service is a type of attack where the server is 

being flooded with a number of requests by the attacker in 

order to keep the server busy and thereby denying the 

services requested by the clients. For example, a malicious 

client sends a large number of unwanted requests to a server. 

Hence the server spends enormous amount of CPU time in 

completing the SSL handshakes due to which the server may 

not have sufficient resources left to handle service requests. 

To maintain the confidentiality and integrity of the puzzle 

generated by the server as well as the solution for the puzzle 

given by the client are encrypted and decrypted respectively 

using various encryption algorithms like RSA decryption. 

Let γ denote the ratio of resource consumption by the client 

to the resource consumed by the server. This ratio should be 

greater in order to meet the economic feasibility of the 

software puzzle scheme. Consider P to be a puzzle function, x 

to be a randomly chosen puzzle challenge by the server and 

sends this x to the client. The client solves this puzzle and 

sends the response (x,y) back to the server for the 

verification. The server then checks the solution for the 

correctness and if the solution does not confirms x=P(y) [18], 

then the client is not being served. The time spent by the 

client to solve the given puzzle is given by tc and the time 

spent by the server to generate the puzzle and verify the 

solution is given by ts. Hence tc >> ts in order to make use of 

the server time efficiently and stop the DoS attack by not 

allowing the attackers to solve many puzzles. But, the 

attackers can reply to the server with an unsolved puzzle 

solution y~ which increases the verification time of the server. 

Thus, the ratio γ decreases dramatically which results in the 

decrease of the efficiency of the client puzzle.  

 The server assumes that the puzzle sent to the client will 

be solved by it only using CPU. However, it is not so. The 

client as an attacker can utilize its freely available GPU to 

solve the puzzle and thereby decreasing the computational 

cost ratio γ. For example, an attacker may amortize one 

puzzle-solving task to hundreds of GPU cores if the client 

puzzle function is parallelizable or the attacker may 

simultaneously send to the server many requests and ask 

every GPU core to solve one received puzzle challenge 

independently if the puzzle function is non-parallelizable. 

This parallelism strategy can dramatically reduce the total 

puzzle-solving time and hence increase the attack efficiency. 

Another disadvantage of the client puzzle is that the puzzle 

function P(.) can be rewritten in real time by the attacker if it 

cannot be solved. Obviously, if a puzzle is designed based on 

client’s GPU capability, the GPU-inflation DoS does not 

work at all. However, we do not recommend to do so because 

it is troublesome for massive deployment due to (1) not all 

the clients have GPU-enabled devices;[12] and (2) an extra 

real-time environment shall be installed in order to run GPU 

kernel.   

 
 

Fig 1.GPU inflated DoS attack against data puzzle 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

1



 

 

II. SOFTWARE PUZZLE 

 

Focussing on the architectural difference between CPU 

and GPU, we present advancement to the client puzzle called 

the software puzzle which defends against the DoS and 

DDoS attacks. Unlike the client puzzle scheme, the software 

puzzle scheme generates the puzzle function P(.) dynamically 

in the form of a software core C upon receiving a client’s 

request. Specifically, by extending DCG technology which 

produces machine instructions at runtime, the proposed 

scheme randomly chooses a set of basic functions, assembles 

them together into the puzzle core C, constructs a software 

puzzle C0x with the puzzle core C and a random challenge x. 

If the server aims to defeat high-level attackers who are able 

to reverse-engineer software [9], it will obfuscate C0x into an 

enhanced software puzzle. After receiving the software 

puzzle sent from the server upon request, the client tries to 

solve this puzzle on its host CPU and sends back the solution 

of the puzzle to the server. If the client is suspected to be an 

attacker, he sends the puzzle received from the server to its 

host GPU. Thereby, overwhelming the server with unwanted 

requests through its host CPU.  However in this case, 

translating the puzzle function received by the host CPU into 

equivalent GPU instructions which is highly complex and 

time consuming. These translations cannot be done well in 

advance because the software puzzle is generated 

dynamically and randomly. 

 

 
 

Fig. 2 Diagram of software puzzle generated with secret key. 

A. Notations 

For ease of reference, important notations used 

throughout  

 the paper are listed below. 

 x: A challenge chosen by server.  

m: A message collected from environment. 

y: A solution to the puzzle challenge x 

(˜ x, ˜ y): A puzzle response returned from client. 

     P(·): Puzzle algorithm such that x =P(y,m).  

     C: Puzzle core which is the software implementation of  

     P(·).  

    C0x: Puzzle which embeds the information of x into C. 

    C1x: Obfuscated C0x. 

 

 That is to say, unlike a data puzzle challenge which 

includes a challenge data only, a software puzzle challenge 

includes a dynamically generated software C(·) which 

including a data puzzle function as a component. Although a 

software puzzle scheme does not publish the puzzle function 

in advance, it also follows the Kerckhoffs’s Principle because 

an adversary knows the algorithm for constructing software 

puzzles, and is able to “reverse-engineer” the software puzzle 

C1x to know the puzzle function P(·) several minutes later 

after receiving the software puzzle. 

 

B. Basic GPU-inflated DoS Attack 

 

        When a client wants to obtain a service, she sends a 

request to the server. After receiving the client request, the 

server responds with a puzzle challenge x. If the client is 

genuine, she will find the puzzle solution y directly on the 

host CPU, and send the response (x, y) to the server. 

However, as shown in Fig. 1, by using the similar mechanism 

in accelerating calculation with GPU[12], a malicious user 

who controls the host will send the challenge x to GPU and 

exploit the GPU resource to accelerate the puzzle-solving 

process. 

 

C. Framework of software puzzle 

 

        In order to defeat the GPU-inflated DoS attack, we 

extend data puzzle to software puzzle as shown in Fig. 2. At 

the server, the software puzzle scheme has a code block 

warehouse W storing various software instruction blocks. 

Besides, it includes two modules: generating the puzzle C0x 

by randomly assembling code blocks extracted from the 

warehouse; and obfuscating the puzzle C0x for high security 

puzzle C1x. 

 

D.  Code Block Warehouse Construction 

 

        The code block warehouse W stores compiled 

instruction blocks {bi}, e.g., in Java byte code, or C binary 

code [15]. The purpose to store compiled codes rather than 

source codes is to save server’s time; otherwise, the server 

has to take extra time to compile source codes into compiled 

codes in the process of software puzzle generation. The 

intuitive requirements for each block are: 

 • In order to assemble the code blocks together, each block 

has well-defined input parameters and output parameters such 

that the output from one block can be used as the input of the 

following blocks.  

• The size of each code block is decided by the security 

parameter κ. Given that the size of software puzzle is 

constant, if the block size is smaller, there are more blocks on 

average such that more puzzles can be constructed. Thus 

smaller block size implies higher security level because an 

attacker has to spend more effort to figure out a puzzle in 

question. The shortcoming of small block size is that the 

server has to spend more time in extracting the basic blocks 

and assembling the extracted blocks into software puzzle 

[21]. Preferably, the warehouse stores both Java byte code 

and the corresponding C binary code. Because the former is 

applicable to different OS platforms but slow, it is suitable to 

deliver the software puzzle to the client in the format of Java 

byte code. In contrast, the later is fast and is used by the 

server for generating the stored pair (x, y). 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

2



 

 

III. METHODOLOGY 

 

 
Fig. 3 Design Modules 

 

A. Puzzle Generator 

        The Puzzle Generator browses the file, splits file into 

packets, assign puzzles and then sends Packets to the 

Receiver via Middle ware Host to corresponding end users by 

providing the IP address. 

 

B. Middleware Host 

        The middleware host is introduced here to redirect 

packets and puzzle details to corresponding end users. It will 

maintain all Puzzle flatted user and also the DOS Attackers 

who misbehaved to sole the corresponding puzzle by giving 

wrong values.  

 

C. Remote Receiver (End User) 

        The End user can receive the data file and verify the 

puzzle by entering the puzzle value which is assigned by the 

Puzzle Generator. If the puzzle value is true then he is 

considered as a Flatted user or considered as a DOS Attacker. 

The attacker and flatted user details will send to the 

Middleware Host instantly. 

 

D. Attacker 

        When a client wants to obtain a service, she sends a 

request to the server. After receiving the client request, the 

server responds with a puzzle challenge x. If the client is 

genuine, she will find the puzzle solution y directly on the 

host CPU, and send the response (x, y) to the server. 

However, as shown in this system, by using the similar 

mechanism in accelerating calculation with GPU, a malicious 

user who controls the host will send the challenge x to GPU 

and exploit the GPU resource to accelerate the puzzle-solving 

process [13]. 

IV. SOFTWARE PUZZLE PACKING 

         

Once a software puzzle C1x is created at the server side 

and compiled into the Java class file C1x.class, it will be 

delivered to the client who requests for services over an 

insecure channel such as Internet, and run at the client’s side. 

Applet is a suitable delivery means because it can be run in 

browsers on many platforms such as Windows, Unix, Mac 

and Linux, despite not applicable to some mobile browsers 

without jail breaking the operating system such as iOS. 

Usually, an Applet is embedded into an HTML page which is 

embedded with an archive including the software puzzle class 

C1x.class and a Java class init. Class for activating the puzzle 

software C1x.class 

1:  <APPLET CODE=‘‘init.class’’ ARCHIVE = ‘‘init.class, 

C1x.class’’ WIDTH=‘‘200’’ HEIGHT=‘‘40’’> 

2:  </APPLET> 

However, not all Applets can be run at the client’s browser 

with the default access policy such that the design for 

software puzzle varies with the browser’s configurations at 

the client side. In the following, we describe two options for 

packing software puzzle based on the configuration at the 

client side [5]. 

 

1: Read the C1x.class 

2: Repeat 

3: Randomly choose a small y~  

4: Decrypt C1x.class with key y~ into class C0x.class 

5: Load class C0x.class 

6: Invoke C0x.class to obtain m~ and future x~=C0~(y~, m~) 

7: Until x~ =x 

8: output (x~, y~) 

 

(Init. class structure for reloading puzzle class on JVM. If a 

correct solution y is found, � C0x.class shall be the same as 

the original puzzle C0x.class, where z = x ⊕ y is calculated 

in advanced and hard-coded into at the server side) 

REFERENCES 

 
[1] J. Larimer. (Oct. 28, 2014). Pushdo SSL DDoS Attacks. [Online]. 

Available: http://www.iss.net/threats/pushdoSSLDDoS.html 
[2] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense 

mechanisms: Classification and state-of-the-art,” Comput. Netw., vol. 

44, no. 5, pp. 643–666, 2004 
[3] A. Juels and J. Brainard, “Client puzzles: A cryptographic 

countermeasure against connection depletion attacks,” in Proc. Netw. 

Distrib. Syst. Secur. Symp., 1999, pp. 151–165. 
[4] T. J. McNevin, J.-M. Park, and R. Marchany, “pTCP: A client puzzle 

protocol for defending against resource exhaustion denial of service 

attacks,” Virginia Tech Univ., Dept. Elect. Comput. Eng., Blacksburg, 
VA, USA, Tech. Rep. TR-ECE-04-10, Oct. 2004 

[5]  R. Shankesi, O. Fatemieh, and C. A. Gunter, “Resource inflation 

threats to denial of service countermeasures,” Dept. Comput. Sci., 
UIUC, Champaign, IL, USA, Tech. Rep., Oct. 2010. [Online]. 

Available: http://hdl.handle.net/2142/17372 

[6]  J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and C. A. Gunter, 
“Reconstructing Hash Reversal based Proof of Work Schemes,” in 

Proc. 4th USENIX Workshop Large-Scale Exploits Emergent Threats, 

2011.  
[7]  Y. I. Jerschow and M. Mauve, “Non-parallelizable and non-interactive 

client puzzles from modular square roots,” in Proc. Int. Conf. 

Availability, Rel. Secur., Aug. 2011, pp. 135–142. 
[8]  R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and 

timed-release crypto,” Dept. Comput. Sci., Massachusetts Inst. 

Technol., Cambridge, MA, USA, Tech. Rep. MIT/LCS/TR-684, Feb. 
1996. [Online]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5709 

[9]  W.-C. Feng and E. Kaiser, “The case for public work,” in Proc. IEEE 
Global Internet Symp., May 2007, pp. 43–48. 

[10]  D. Keppel, S. J. Eggers, and R. R. Henry, “A case for runtime code 

generation,” Dept. Comput. Sci. Eng., Univ. Washington, Seattle, WA, 
USA, Tech. Rep. CSE-91-11-04, 1991. 

[11]  E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating DoS with 

transparent proof-of-work,” in Proc. ACM CoNEXT Conf., 2007, p. 
74.  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

3



 

 

[12]  NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C Programming 

Guide, Version 4.2. [Online]. Available: 
http://developer.download.nvidia.com/ 

[13]  X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks 

using congestion puzzles,” in Proc. 11th ACM Conf. Comput. 
Commun. Secur., 2004, pp. 257–267. 

[14]  M. Jakobsson and A. Juels, “Proofs of work and bread pudding 

protocols,” in Proc. IFIP TC6/TC11 Joint Working Conf. Secure Inf. 
Netw., Commun. Multimedia Secur., 1999, pp. 258–272.  

[15]  D. Kahn, The Codebreakers: The Story of Secret Writing, 2nd ed. New 

York, NY, USA: Scribners, 1996, p. 235.  
[16]  K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration of AES 

encryption on CUDA GPU,” Int. J. Netw. Comput., vol. 2, no. 1, pp. 

131–145, 2012. 
[17] ] B. Barak et al., “On the (Im)possibility of obfuscating programs,” in 

Advances in Cryptology (Lecture Notes in Computer Science), vol. 

2139. Berlin, Germany: Springer-Verlag, 2001, pp. 1–18. 
[18]  H.-Y. Tsai, Y.-L. Huang, and D. Wagner, “A graph approach to 

quantitative analysis of control-flow obfuscating transformations,” 

IEEE Trans. Inf. Forensics Security, vol. 4, no. 2, pp. 257–267, Jun. 
2009. 

[19]  S. Wang. (Sep. 18, 2011). How to Create an Applet & C++. [Online]. 

Available: http://www.ehow.com/how_12074039_createApplet-
c.html#ixzz24Lsk0OJQ  

[20]  J. Bailey. (Oct. 28, 2014). How to Install Java on an iPhone, eHow 

Contributor. [Online]. Available: http://www.ehow.com/ 
how_5659673_install-java-iphone.html#ixzz24jIAyKiM 

[21]  J. Ansel et al., “Language-independent sandboxing of just-in-time 

compilation and self-modifying code,” in Proc. ACM SIGPLAN Conf. 
Program. Lang. Design Implement., 2011, pp. 355–366.  

[22]  J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms for 

Systems and Processes. San Mateo, CA, USA: Morgan Kaufmann, 
2005, p. 19. 

[23]  T. Lindholm and F. Yellin, The Java Virtual Machine Specification, 

2nd ed. Reading, MA, USA: Addison-Wesley, 1999, ch. 9. [Online]. 
Available: http://docs.oracle.com/javase/specs/ 

jvms/se5.0/html/VMSpecTOC.doc.html  

[24]  J. Black and P. Rogaway, “Ciphers with arbitrary finite domains,” in 
Topics in Cryptology (Lecture Notes in Computer Science), vol. 2271. 

Berlin, Germany: Springer-Verlag, 2002, pp. 114–130.

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

4


