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Abstract - This paper presents the sugeno model identification 
method by which a great number of systems whose parameters 
vary dramatically with working states can be identified via 
Fuzzy Neural Networks (FNN). The suggested method could 
overcome the drawbacks of traditional linear system 
identification methods which are only effective under certain 
narrow working states and provide a global dynamic description 
based on which further control of such systems may be carried 
out. The simulation results of a second-order parameter varying 
system demonstrate the effectiveness of the method. 
Keywords - Parameter Varying Systems, TS Fuzzy Model, Fuzzy 
Neural Networks (FNN), Identification. 

1  INTRODUCTION 

Controlled systems whose parameters vary dramatically 
with working states, namely parameter varying systems, are 
widely encountered in practical industrial situations. 
Although traditional linear system identification methods 
have been well established in the last twenty years, it can only 
be used under a certain narrow range of working conditions. 
Moreover, traditional controllers based on such models 
cannot cope with the changes in process dynamic effectively. 
Therefore, developing a global dynamic model and 
establishing the corresponding control schemes for the 
parameter varying systems are deeply expected. 

Takagi and Sugeno [1,2,3] proposed a new type of fuzzy 
model (TS model) which has been widely used in many 
disciplines. Describing complex systems is one of the most 
important applications since the mathematical expression of 
the model is convenient to design controllers. Recently, the 
authors [4] suggested an identification method of the TS 
fuzzy model for nonlinear systems via Fuzzy Neural 
Networks (FNN). It has been proved effective in describing 
the systems. In this paper, the TS fuzzy model is generalized 
to the parameter varying systems, and an identification 
method based on FNN is presented. The simulation results of 
a second-order system verify the effectiveness of the method. 

This paper is organized as follows: Section 2 gives 
mathematical expression of the TS fuzzy model and point out 
the reason why the model is fit for parameter varying systems. 
Identification method for the model via FNN is suggested in 
section 3. The structure and the training algorithm for the 
networks are also given in details. Section 4 gives the 
simulation results of a second-order parameter varying 

system. Finally, the conclusions of the paper are given in 
section 5. 

2.  TS FUZZY MODEL 

Parameter varying systems which possess m working state 
characteristic variables, q  inputs and single output can be 
described by the TS fuzzy model consisting of R  rules where 
the i-th rule can be represented as: 
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Where R  is the number of rules in the TS fuzzy model. 
( )z j mj  = 1 2, , ,  is the j-th characteristic variable, which 

reflects the working state of the systems and can be selected 
as input, output or other variables affecting the parameters of 
system dynamics. ( )x l ql  = 1 2, , ,  is the l-th model input. yi  

is the output of the i-th rule. For the i-th rule, Aj

i k j,
 is the k j -th 

fuzzy subset of z j . al
i  is the coefficient of the consequent. rj  

is the fuzzy partition number of z j . For simplicity of 
induction, we let r rj =  and r  is determined by both the 
complexity and the accuracy of the model. 

Once a set of working state variables ( )z z zm10 20 0, , ,  and 

model input variables ( )x x xq10 20 0, , ,  are available, then the 
output of the TS model under such working states can be 
calculated by the weighted-average of each yi : 
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where yi  is determined by the consequent equation of the i-th 
rule. The truth-value µ i  of the i-th rule can be calculated as: 
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Furthermore, the equation (2) can be rewritten as: 
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From (4), one can see that the TS fuzzy model can be 
expressed as an ordinary linear equation under certain 
working states since the truth-value µ i  is only determined by 
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the working state variables. As µ i  varies with working state, 
TS fuzzy model is a coefficient-varying linear equation. For 
all possible varying ranges of working states, the TS fuzzy 
model reflects the relationships between model parameters 
and working states. Therefore, the global dynamic 
characteristics of the parameter varying systems can be 
represented. 

3.  FUZZY NEURAL NETWORKS TS FUZZY MODEL 
IDENTIFICATION METHOD 

A.  Structure of the FNN 

According to (1~3), the structure of FNN presented here 
consists of a premise, consequent and fuzzy inference. For 
systems which posses m working state characteristic 
variables, q  inputs and a single output, the FNN used for the 
TS model identification is shown in Fig. 1. The circles and 
the squares in the figure represent the units of the networks. 
The notations between the units denote the connection 
weights. The units without any notation just deliver the 
signals from input to output. 

  1) Normalization of the working state variables 

Layers (A)~(B) of the FNN are used to normalize the 
working state variables in case of saturation of the premise 
nodes. Assuming P  samples ( ) ( )z z z p Pp p

m
p

1 2 1 2, , , , , ,  =  are 
available for training the networks, the j-th working state 
variable of the p-th sample can be normalized as: 
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p

s j j
p
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where z j
p  is the normalized working state variable of z j

p ; 

( )ws j
 and ( )wt j

 are the coefficients and biases of 

normalization respectively: 
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  2) Premise 

The premise parts of the FNN include Layers (C)~(F) 
which are used for fuzzy partition and truth-value 
calculations. Signature ‘∑ ’ in layer (D) ,which is the sum 
node, realizes the following operations for the k-th fuzzy 
subset of z j : 
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Signature ‘Λ ’ in layer (F) is the fuzzy minimum node and the 
input-output relationships for the i-th rule can be written as: 
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where ( )I j k,
⋅  and ( )Oj k,

⋅  are input and output of the nodes which 
correspond to the k-th fuzzy subset of z j  in layer ( )⋅  

respectively; ( )Ii
⋅  and ( )Oi

⋅  are input and output of the nodes 
which correspond to the i-th rule in layer ( )⋅  respectively; the 
central point and gradient of the k-th fuzzy subset for z j  are 

determined by both ( )wg j k,
 and ( )wc j k,

; ( )φ i j,  represents the 

connective relationship between the i-th rule and the k-th 
fuzzy subset of z j . 

The membership functions of the working state variables 
are determined by activation functions of the nodes in layer 
(E). In this paper, the following activation functions are 
taken: 
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which realize fuzzy partition as shown in Fig. 2. 

  3) Consequent and fuzzy inference 

Layers (G)~(J), which are used to implement the linear 
equations of the TS fuzzy model, are consequent parts of the 
FNN. As for the i-th rule of the consequent, input-output 
relation realized can be written as: 

 ( ) ( )O w xi
J

a j i j
j

q

=
=

∑
,

1

 (10) 

where ( )wa j i,
 is the coefficient of xi  in rule i . 

Layers (K)~(M) realize the fuzzy inference as shown in (2). 

B.  Learning algorithm 

Two kinds of parameters need to be learnt by the FNN. 
One is ( )wg j k,

 and ( )wa j k,
, which determine central points 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

and gradients of the membership functions in the premise. 
The other is ( )wa j i,

, which determines local linear 

relationships of the consequent. 
Assuming P  samples ( )z z z x x xp p

m
p p p

q
p

1 2 1 2, , , , , , ,    

( )p P= 1 2, , ,  are available for training the FNN and the 
corresponding teacher signal is t p . Once the p-th sample is 
put on the networks, the actual output y p  of the networks can 
be obtained. Thus, the learning error function of the sample 
can be defined as: 

 ( )E t yp p p= −
1

2

2
 (11) 

Under this definition, the total error function of all the 
samples can be written as: 
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According to the Gradient-Descent learning algorithm, one 
can obtain: 
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In order to solve ( ) ( )∂ ∂O Oi
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equivalent transition for (7) is needed: 
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Therefore, ( ) ( )∂ ∂O Oi
F p
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,  can be calculated by 
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Moreover, ( ) ( )∂ ∂O Ij k
E p
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, ,  can be obtained from (10) as 
follows: 
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From (14), (17) and (18), ( )∂ ∂E wg j k,
 can be obtained. 

Using the same method mentioned above, ( )∂ ∂E wc j k,
 can 

also be represented by 
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Therefore, the final tuning equations of the premise and 
consequent parameters of the FNN can be written as: 
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 ( ) ( ) ( ) ( ) ( )w n w n E wa j i a j i a j i, , ,
+ = − ⋅1 ζ ∂ ∂  (20) 

 ( ) ( ) ( ) ( ) ( )w n w n E wg j k g j k g j k, , ,
+ = − ⋅1 ξ ∂ ∂  (21) 

 ( ) ( ) ( ) ( ) ( )w n w n E wc j k c j k c j k, , ,
+ = − ⋅1 ξ ∂ ∂  (22) 

where n  is the training times; ζ  and ξ  are learning rates. In 
this paper, we use the adaptive back-propagation algorithm 
suggested by the authors [5]. 

4.  SIMULATION EXAMPLE 

Considering the following second-order parameter varying 
system: 

 
( )

( ) ( )
y s

u s Ts
=

+

1

1 2
 (23) 

where the time constant T  is affected by a working state 
variable [ ]( )z z  ∈ 0 3 0 9. , . . Suppose the relationship between 
them is: 
 ( )T z= + ⋅ −20 20 0 3.  (24) 
Once the sample time T0  is given, the discrete time 
description of the system could be obtained: 
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In this paper, the sample time T0  is taken as 5 seconds. Curves 
1, 2 and 3 in Fig. 3 show the unit step response of the system 
at z = 0 3. , z = 0 6.  and z = 0 9.  respectively and one can see that 
variations between the different z ’s are very large. 

Using the suggested FNN TS model identification method, 
we select z  as a working state variable for the input of 
premise in the FNN and take ( )u k − 1 , ( )y k − 1  and ( )y k − 2  
as input variables for the TS model. The aim of the 
identification is to obtain the global model which is suitable 
for all the possible working states of the system. First, ten 
states are selected randomly, and 310 groups of training data 
are obtained by exerting 5-order M sequels which have the 
range of 1 on the system. All of the weights in the consequent 
of the FNN are selected between -0.1 and 0.1 randomly, and 
the fuzzy partition number r  is selected to 7 as shown in Fig. 
2. 

In order to fasten the convergence rate of the networks, the 
following parameters are used as the initial value of the 
adaptive BP algorithm shown in [5]: 
 ( )ζ 1 0 9= . , ( )ξ 1 0 4= . , α 0 1 4= . , α1 0 6= . , Es = 0 5.   

The final convergence conditions are taken as: 
1) The number of the samples which have satisfied 

( )t y tp p p− ≤ 0 05.  has exceeded 95 percent of the total 
samples. 

2) Training times has exceeded the maximum times 
specified as 10000. 

After training the FNN 868 times, the networks converged 
by satisfying condition 1) and the final simulation results are 

shown in Fig 4 and Fig. 5. As shown in Fig. 4, where the solid 
line and the dotted line denote the expected output of the 
system and the actual output of the networks respectively, 
most of the samples have good performance to describe the 
actual outputs of the system. 

Finally, we use another ten groups of z  to verify the 
performance of the resulted FNN TS fuzzy model and the 
results are shown in Fig. 6. The same conclusion can be 
drawn from it. Therefore, the suggested TS model 
identification method is strongly effective to obtain the global 
dynamic model of parameter varying systems. 

5.  CONCLUSIONS 

This paper generalizes the TS model to the parameter 
varying systems and presents the corresponding identification 
method via FNN. The proposed method can effectively 
realize the identification of parameter varying systems 
whereas the traditional linear system identification methods 
can not. Furthermore, control of such systems based on the 
well-established TS fuzzy model can be carried out and this 
further research field creates for us. The simulation results of 
a second-order parameter varying system have fully verified 
the effectiveness of this method. 

It should be noted that a more effective way is provided to 
establish fuzzy control rules for the multi-working-states 
situations. Based on the model, performance of fuzzy 
controller will be greatly improved under such situations. 
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Fig. 1. Structure of FNN 

 
Fig. 4. Results of training 

 
Fig. 3. Unit step response under different 

working state 

 
Fig. 5. Membership functions after training 

 
Fig. 2. Fuzzy subsets of working state 

variables 

 
Fig. 6. Results of verification 
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