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Abstract— This paper is concerned an analytical method for 

determining the thermal stresses in a finite solid cylinder under 

a sudden temperature change to a constant temperature with 

the help of integral transform technique. 
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INTRODUCTION  

Kaliski and Nowacki [1] considered the half-space 

problem of magneto thermo elastic waves produced by a 

thermal shock in a perfectly conducting medium. The 

problem of magneto thermo elasticity related to an infinite 

cylindrical region was solved by Dhaliwal and Singh [2]. 

Noda et al. [3] give a combined formulation of the two 

theories of generalized thermo elasticity to discuss the 

problem of an infinite solid with a cylindrical of spherical 

hole. 

In this paper, an attempt has been made to determine the 

magneto thermo stresses of finite solid cylinder with help of 

Hankel Transform and Laplace transform technique 

 

NOMENCLATURE 

 

( )tvT ,  - Temperature charge (absolute temperature minus      

             reference temperature). 
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 - Displacement vector 

u - Radial displacement 

,  - Radial stress and circumferential stress. 

at,,  - Density, time and radius of solid cylinder. 

  - Coefficient of linear thermal expansion. 

G,  - Lame constants 

vE,  - Young’s modulus and Poisson’s ratio 

  - Magnetic permeability 
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I -STATEMENT OF THE PROBLEM 

 

Consider a long finite solid cylinder of radius with perfect 

conductivity placed initially in an axial magnetic field   

(0,0, )zH H
r

.  

Let this cylinder be subjected to a rapid change in 

temperature ),( tT   produced by the absorption of an 

electromagnetic pulse or ay −  pulse radiant energy. 

Assuming that the magnetic permeability,   of the solid 

cylinder equals the magnetic permeability of the medium 

around it and omitting. Displacement maxwell equations for a 

perfectly conducting elastic body are given by 
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Let magneto elastic dynamic equation of the solid cylinder 

becomes 
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Where fr  is defined as 
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The radial stress and the circumferential stress of a solid 

cylinder subjected to a thermal shock load are ),( trT , are  

 

),(
21

)2(),( trT
v

E
u

rr

u
Gtr

r
−

−+



+=


                              (6) 

 

II. SOLUTION OF THE PROBLEM 

                                                                              

Substituting Eqs (5) to (6) into (4) the basic displacement 

equations of magneto thermo elastic motion is expressed as 
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Where 22
z

HB  ++=  

Omitting the Maxwell tensor on the surface of the solid 

cylinder the corresponding boundary conditions are 
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The initial conditions are 
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Assume that general solution to the basic equation (7) to 

(10) may be expressed in the form 

 

( , ) ( , ) ( , )s du r t u r t u r t= +                                               (11) 

 

Where ( , )su r t  and ( , )du r t  are the static solution and 

dynamic solutions to Eq. (7) to (10). 

Solving Eq. (11) we have, 
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Where unknown constants 
1

B  and 
2B in Eq. (12) may be 

determined by 
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From equations (7),(10) and (12) and using the boundary 

condition (8),(9) we get, 
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Where ( , )su r t  is the known static solution shown in Eq. 

(12). 

The solution of the homogeneous formula of Eq. (14) 

assuming 0),( =tru
s

 is given by 
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Where )(rf  and w are the characteristic function and 

natural frequency respectively. 

Substituting Eq. (19) into the Eq. (15) and utilizing Eqs. 

(16) and (17)  

We have 
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The generalized solution of Eq. (24) is given by 
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Substituting Eq. (23) into Eqs. (21) the corresponding 

characteristic function Eq. (23) reduces to. 

 

( ) ( )n n nf r A J k r=                                                          (24) 

 

This should satisfy the characteristic equation 
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Where ( )m nJ k r  is an mth order Bessel function of the 

first kind, ( 1,2,3......)nk n =  are the positive roots of eigen 

equation (25). 

And  

Lnn
ckw =                                                                (26) 
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By means of the normalization property of eigen function, the 

constant An in Eq. (24) is determined as 
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Define a finite Hankel transform of )(rf  as 
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Then the inverse of Eqn (28) is given by 
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Using Eq. (28) and applying a finite Hankel transform to 

Eq. (15) we have 
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Where 

 ( , ) ( , )s n su k t Hankel u r t=  

 

The first term on the left hand side of Eq. (31) should be 

the homogeneous boundary condition (17) simplifies to 
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Applying Laplace transforms to Eq. (32), one obtains 
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Where p is the Laplace transform parameter. Taking the 

inverse Laplace transform of Eq. (33) we have 
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Using Eqs (29) and (30) and applying finite inverse Hankel 

transform to Eq. (34), the elasto dynamic solution ( , )du r t  

of Eq. (15) to (18) may be expressed as 
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Substituting Eq. (16) and (39) into Eq. (12) the general 

solution of the basic equation (8) becomes 
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Equations (35) and (36), are the corresponding magneto 

thermodynamic stress. 

 

By using Eq. (36) and the basic solution for magneto 

thermo elastic motion equation (11) reduces to 
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From Eqs. (6) and (7) and utilizing the following properties 

of the Bessel functions.  
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We get the magneto thermo stresses, 
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Where )/(),(),(
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* ETtrtr
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 =  is normalized. 

 

Eq. (41) and (42) are the magneto thermo stress is only 

dependent on the dynamic term in the basic solution (7) . 

Using the proportion of Bessel function; 
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The magneto thermo stress response at the center (R = 0) of 

solid cylinder reduces to; 
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Equations (43) to (44) are the magneto thermo stress response 

at the center (R = 0) of a finite solid cylinder. 
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III. CONCLUSION 

 

In this paper, we have investigated the magneto thermo 

stresses in a finite solid cylinder with the help of the finite 

Hankel transform and Laplace transform techniques. The 

expressions that are obtained can be applied to the design of 

useful structures or machines in engineering application . 
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