
TO PREDICT GUILTY AGENTS USING FAKE OBJECT
INJECTION

A. Santhi Lakshmi Asso.Prof. A. Bhaskar,
M.Tech (SE), ASCET Dept. of Computer Science,ASCET,

Gudur, Andhra Pradesh Gudur, Andhra Pradesh

Padmavathi Vanka (M.Tech)
CSE dept., PBRVITS, Kavali

Abstract: Modern business activities rely on
extensive email exchange. Email leakages have become
widespread, and the severe damage caused by such
leakages constitutes a disturbing problem for
organizations. In this paper we studied the following
problem: In the course of doing business, sometimes the
data distributor will give sensitive data to trusted third
parties. Some of the data is leaked and found in an
unauthorized place. The distributor cannot blame the
agent without any evidence. Current approaches can
detect the hackers but the total number of evidence will
be less and the organization may not be able to proceed
legally for further proceedings. In this work, we
implement and analyze a guilt model that detects the
agents using allocation strategies without modifying the
original data. Our work identifies the agent who leaked
the data with enough evidence. The main focus of this
paper is to distribute the sensitive data “intelligently” to
agents in order to improve the chances of detecting a
guilty agent with strong evidence. The objective of our
work is to improve the probability of identifying
leakages using Data allocation strategies across the
agents and also to identify the guilty party who leaked
the data by injecting “realistic but fake” data records.

Keywords: Allocation strategies, sensitive data, data
leakage, fake records, third parties.

1. INTRODUCTION

In the course of doing business, sometimes
sensitive data must be handed over to supposedly
trusted third parties. For example, a hospital may give
patient records to Researchers who will devise new
treatments. Similarly, a company may have
partnerships with other companies that require sharing
customer data. Another enterprise may outsource its
data processing, so data must be given to various
other companies. There always remains a risk of data
getting leaked from the agent. Perturbation is a very
useful technique where the data are modified and
made “less sensitive” before being handed to agents.
For example, one can add random noise to certain
attributes, or one can replace exact values by ranges.
But this technique requires modification of data.
Leakage detection is handled by watermarking, e.g., a
unique code is embedded in each distributed copy. If
that copy is later discovered in the hands of an

unauthorized party, the leaker can be identified. But
again it requires code modification. Watermarks can
sometimes be destroyed if the data recipient is
malicious. Our goal is to detect when the distributor’s
sensitive data has been leaked by agents, and if
possible to identify the agent that leaked the data.
Perturbation is a very useful technique where the data
is modified and made “less sensitive” before being
handed to agents. We develop unobtrusive techniques
for detecting leakage of a set of objects or records. In
this section we develop a model for assessing the
“guilt” of agents. We also present algorithms for
distributing objects to agents, in a way that improves
our chances of identifying a leaker. Finally, we also
consider the option of adding “fake” objects to the
distributed set. Such objects do not correspond to real
entities but appear realistic to the agents. In a sense,
the fake objects acts as a type of watermark for the
entire set, without modifying any individual members.
If it turns out an agent was given one or more fake
objects that were leaked, then the distributor can be
more confident that agent was guilty

2 PROBLEM SETUP AND NOTATION
Entities and Agents

A distributor owns a set T={t1,....,tm} of valuable data
objects. The distributor wants to share some of the
objects with a set of agents U1,U2,...Un. but does not
wish the objects be leaked to other third parties. The
objects in T could be of any type and size, e.g., they
could be tuples in a relation, or relations in a database.

An agent Ui receives a subset of objects ⊆ ,
determined either by a sample request or an explicit
request:

 Sample request = (,). :
Any subset of mi records from T can be
given to Ui.

 Explicit request= (,). Agent
receives all T objects that satisfy

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

Example. Say that T contains customer records for a
given company A. Company A hires a marketing
agency U1 to do an online survey of customers.
Since any customers will do for the survey, U1
requests a sample of 1,000 customer records. At
the same time, company A subcontracts with agent
U2 to handle billing for all California customers.
Thus, U2 receives all T records that satisfy the
condition “state is California.”

Although we do not discuss it here, our model can
be easily extended to requests for a sample of objects
that satisfy a condition (e.g., an agent wants any 100
California customer records). Also note that we do not
concern ourselves with the randomness of a sample.
(We assume that if a random sample is required, there
are enough T records so that the to-be-presented
object selection schemes can pick random records
from T).

3 RELATED WORK
The guilt detection approach we present is related to
the data provenance problem [3]: tracing the lineage
of S objects implies essentially the detection of the
guilty agents. Tutorial [4] provides a good overview
on the research conducted in this field. Suggested
solutions are domain specific, such as lineage tracing
for data ware-houses [5], and assume some prior
knowledge on the way a data view is created out of
data sources. Our problem formulation with objects
and sets is more general and simplifies lineage
tracing, since we do not consider any data
transformation from Ri sets to S.

As far as the data allocation strategies are
concerned, our work is mostly relevant to
watermarking that is used as a means of establishing
original ownership of distributed objects. Watermarks
were initially used in images [16], video [8], and
audio data [6] whose digital representation includes
considerable redundancy. Recently, [1], [17], [10],
[7], and other works have also studied marks insertion
to relational data. Our approach and watermarking are
similar in the sense of providing agents with some
kind of receiver identifying information. However, by
its very nature, a watermark modifies the item being
watermarked. If the object to be watermarked cannot
be modified, then a watermark cannot be inserted. In
such cases, methods that attach watermarks to the
distributed data are not applicable.

4. DATA ALLOCATION PROBLEM

The main focus of this paper is the data allocation
problem: how can the distributor “intelligently” give
data to agents in order to improve the chances of

detecting a guilty agent? As illustrated in Fig. 2, there
are four instances of this problem we address,
depending on the type of data requests made by agents
and whether “fake objects” are allowed. The two
types of requests we handle were defined in Section 2:
sample and explicit. Fake objects are objects
generated by the distributor that are not in set T . The
objects are designed to look like real objects, and are
distributed to agents together with T objects, in order
to increase the chances of detecting agents that leak
data. We discuss fake objects in more detail in
Section5.1.
As shown in Fig. 2, we represent our four problem
instances with the names , , where E
stands for explicit requests, S for sample requests, F
for the use of fake objects, and for the case where
fake objects are not allowed.
4.1 Fake Objects

The distributor may be able to add fake
objects to the distributed data in order to improve his
effectiveness in detecting guilty agents. However,
fake objects may impact the correctness of what
agents do, so they may not always be allowable.

The idea of perturbing data to detect leakage is not
new, e.g., [1]. However, in most cases, individual
objects are perturbed, e.g., by adding random noise to
sensitive salaries, or adding a watermark to an image.
In our case, we are perturbing the set of distributor
objects by adding fake elements

4.2 Optimization Problem

The distributor’s data allocation to agents has one
constraint and one objective. The distributor’s
constraint is to satisfy agents’ requests, by providing
them with the number of objects they request or with
all available objects that satisfy their conditions. His
objective is to be able to detect an agent who leaks
any portion of his data.

We consider the constraint as strict. The distributor
may not deny serving an agent request as in [13] and
may not provide agents with different perturbed
versions of the same objects as in [1]. We consider
fake object distribution
as the only possible constraint relaxation.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

Our detection objective is ideal and intractable.
Detection would be assured only if the distributor
gave no data object to any agent (Mungamuru and
Garcia-Molina [11] discuss that to attain “perfect”
privacy and security, we have to sacrifice utility). We
use instead the following objective: maximize the
chances of detecting a guilty agent that leaks all his
data objects.

5. Allocation Strategies:
In this section, we describe allocation strategies that
solve exactly or approximately the scalar versions of
(8) for the different instances presented in Fig. 2. We
resort to approximate solutions in cases where it is
inefficient to solve accurately the optimization
problem.

We deal with problems with explicit data
request, with problems with sample data requests.
5.1 Explicit Data Requests

In problems of class EF , the distributor is
not allowed to add fake objects to the distributed data.
So, the data allocation is fully defined by the agents’
data requests. Therefore, there is nothing to optimize.

In EF problems, objective values are initialized by
agents’ data requests. Say, for example, that ={ , } and there are two agents with explicit data
requests such that = { , }and = { }. The
value of the sum-objective is in this case11 ∩ = 12 + 11 = 1.5
5.2 Sample Data Requests
With sample data requests, each agent Ui may

receive any T subset out of | | different ones.
Hence, there are ∏ | | different object allocations.
In every allocation, the distributor can permute T
objects and keep the same chances of guilty agent
detection. The reason is that the guilt probability
depends only on which agents have received the
leaked objects and not on the identity of the leaked
objects.

Therefore, from the distributor’s perspective, there are
different allocations. ∏ | || |
5.2.1 Random
An object allocation that satisfies requests and ignores
the distributor’s objective is to give each agent Ui a
randomly selected subset of T of size mi. We denote
this algorithm by s-random and we use it as our
baseline. We present s-random in two parts:
Algorithm 4 is a general allocation algorithm that is
used by other algorithms in this section. In line 6 of
Algorithm 4, there is a call to function
SELECTOBJECT() whose implementation
differentiates algorithms that rely on

Algorithm1 . Algorithm 2 shows function
SELECTOBJECT()
for s-random.

Algorithm 1: Allocation for Sample Data Requests
()
Input: , . . ., , | |.

 Assuming mi ≤ | |
Output: R1, . . .,Rn
1: a 0| |

 a[]:number of agents who have
received object tk

2: R1 , . . .,Rn
3: remaining ∑
4: while remaining > 0 do
5: for all i=1, . . . , n : | | <mi do

6: k SELECTOBJECT(,) .
 May also use additional parameters

7: Ri Ri { }
8: a[] a[] 1
9: remaining remaining 1

Algorithm 2: Object Selection for s-random
1: function SELECTOBJECT(;)
2: k select at random an element from
set ′ ′ ∉

3: return k
In s-random, we introduce vector a ∈ | | that

shows the object sharing distribution. In particular,
element a[] shows the number of agents who receive
object tk.

Algorithm s-random allocates objects to agents in a
round-robin fashion. After the initialization of vectors
d and a in lines 1 and 2 of Algorithm 4, the main loop
in lines 4-9 is executed while there are still data
objects (remaining > 0) to be allocated to agents. In
each iteration of this loop (lines 5-9), the algorithm
uses function SELECTOBJECT() to find a random
object to allocate to agent Ui. This loop iterates over
all agents who have not received the number of data
objects they have requested.
The running time of the algorithm is 0(∑) and
depends on the running time of the object selection
function SELECTOBJECT(). In case of random
selection, we can have = 0(1) by keeping in
memory a set ′ ′ ∉ for each agent Ui .

Algorithm s-random may yield a
poor data allocation.Say, for example, that the
distributor set T has three objects and there are three
agents who request one object each. It is possible that
s-random provides all three agents with the same
object.
6. Experimental Results:
We implemented the presented allocation algorithms
in Python and we conducted experiments with
simulated
data leakage problems to evaluate their performance.
We present the evaluation for sample requests and
explicit data requests, respectively.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

6.1. Explicit Requests:
In the first place, the goal of these experiments was to
see whether fake objects in the distributed data sets
yield significant improvement in our chances of
detecting a guilty agent. In the second place, we
wanted to evaluate our optimal algorithm relative to a
random allocation.

6.2 Sample Requests
With sample data requests, agents are not interested in
particular objects. Hence, object sharing is not
explicitly defined by their requests. The distributor is
“forced” to allocate certain objects to multiple agents
only if the number of requested objects ∑
exceeds the number of objects in set T . The more
data objects the agents request in total, the more
recipients, on average, an object has; and the more
objects are shared among different agents, the more
difficult it is to detect a guilty agent. Consequently,
the parameter that primarily defines the difficulty of a
problem with sample data requests is the ratio.∑ | |
7. Conclusion:

In a perfect world, there would be no need to
hand over sensitive data to agents that may
unknowingly or maliciously leak it. And even if we
had to hand over sensitive data, in a perfect world, we
could watermark each object so that we could trace its
origins with absolute certainty. However, in many
cases, we must indeed work with agents that may not
be 100 percent trusted, and we may not be certain if a
leaked object came from an agent or from some other
source, since certain data cannot admit watermarks.

Our future work includes the investigation of
agent guilt models that capture leakage scenarios that
are not studied in this paper. For example, what is the
appropriate model for cases where agents can collude
and identify fake tuples? A preliminary discussion of
such a model is available in [14]. Another open
problem is the extension of our allocation strategies so
that they can handle agent requests in an online
fashion (the presented strategies assume that there is a
fixed set of agents with requests known in advance).

REFERENCES:

[1] R. Agrawal and J. Kiernan, “Watermarking Relational
Databases,” fact improves, on average, the min
values, since the Proc. 28th Int’l Conf. Very Large
Data Bases (VLDB ’02), VLDB Endowment, pp. 155-
166, 2002.

[2] P. Bonatti, S.D.C. di Vimercati, and P. Samarati, “An
Algebra for Composing Access Control Policies,” ACM

Trans. Information and System Security, vol. 5, no. 1, pp. 1-
35, 2002.

[3] P. Buneman, S. Khanna, and W.C. Tan, “Why
and Where: A Characterization of Data Provenance,”
Proc. Eighth Int’l Conf. Database Theory (ICDT ’01), J.V.
den Bussche and V. Vianu, eds., pp. 316-330, Jan. 2001

[4] P. Buneman and W.-C. Tan, “Provenance in
Databases,” Proc. ACM SIGMOD, pp. 1171-1173, 2007.

[5] Y. Cui and J. Widom, “Lineage Tracing for
General Data Warehouse Transformations,” The
VLDB J., vol. 12, pp. 41-58, 2003

[6] S. Czerwinski, R. Fromm, and T. Hodes, “Digital
Music Distribution and Audio Watermarking,”
http://www.scientificcommons.
org/43025658, 2007.

[7] F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li, “An
Improved Algorithm to Watermark Numeric Relational
Data,” Information Security Applications, pp. 138-149,
Springer, 2006.

[8] F. Hartung and B. Girod, “Watermarking of
Uncompressed and Compressed Video,” Signal Processing,
vol. 66, no. 3, pp. 283-301, 1998.

[9] S. Jajodia, P. Samarati, M.L. Sapino, and V.S.
Subrahmanian, “Flexible Support for Multiple Access
Control Policies,” ACM Trans. Database Systems, vol. 26,
no. 2, pp. 214-260, 2001.

[10] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting
Relational Databases: Schemes and Specialties,” IEEE
Trans. Dependable and Secure Computing, vol. 2, no. 1,
pp. 34-45, Jan.-Mar. 2005.

[11] B. Mungamuru and H. Garcia-Molina, “Privacy,
Preservation and Performance: The 3 P’s of Distributed
Data Management,” technical report, Stanford Univ., 2008.

[12] V.N. Murty, “Counting the Integer Solutions of a
Linear Equation with Unit Coefficients,” Math. Magazine,
vol. 54, no. 2, pp. 79-81, 1981

[13] S.U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and
R. Motwani, “Towards Robustness in Query Auditing,”
Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB
’06), VLDB Endowment, pp. 151-162, 2006.

[14] P. Papadimitriou and H. Garcia-Molina, “Data
Leakage Detection,” technical report, Stanford Univ., 2008

[15] P.M. Pardalos and S.A. Vavasis, “Quadratic
Programming with One Negative Eigenvalue Is NP-
Hard,” J. Global Optimization

[16] J.J.K.O. Ruanaidh, W.J. Dowling, and F.M. Boland,
“Watermarking Digital Images for Copyright Protection,”

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

IEE Proc. Vision Signal and Image Processing, vol. 143,
no. 4, pp. 250-256, 1996.

[17] R. Sion, M. Atallah, and S. Prabhakar, “Rights
Protection for Relational Data,” Proc. ACM SIGMOD, pp.
98-109, 2003.

[18] L. Sweeney, “Achieving K-Anonymity Privacy
Protection Using Generalization and Suppression,”
http://en.scientificcommons.org/43196131, 2002

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

