
Tolerating Failure in Distributed Systems using

Diskless Checkpointing

K. C. Maheswari

1
, V. Hemalatha

2
, P. B. Selvapriya

3

Assistant Professor, Department of CSE,

N.S.N. College of Engineering and Technology, Karur,

Tamilnadu. India

Abstract :- Checkpointing is a technique to perform fault

tolerance in distributed computing systems. Diskless

checkpointing stores checkpoint data in main memory instead

of storing it in a secondary memory like disks. Diskless

checkpointing is a technique to tolerate multiple failures in a

distributed system using simple checkpointing and failure

recovery, without depends on selected checkpoint processors.

A neighbour based checkpoint approach stores checkpoint in

checkpoint storage nodes which can tolerate only less number

of failures in a single step and the checkpoint data in the main

memory reduces the speed of the processor. To reduce the

memory space required for saving checkpoints and increase

the fault tolerance rate in distributed environment a LZW

compression technique is used. This reduces the amount of

checkpoint data to be stored in memory. LZW is a dictionary

based compressor which replaces repetitive data patterns with

compact representation. No need to pass the dictionary to the

decompressor in LZW compression method. To tolerate more

failures in the system the failure processes are distributed to

different groups and recovered.

 Keywords - Distributed System; Diskless heckpointing; LZW

Compression; Multiple Failures; Fault Tolerance

I. INTRODUCTION

Fault tolerance is one of the most desirable

properties for many distributed or parallel computing

systems. Previous fault tolerance methods involved in

checkpointing the system state and restore it when a system

is in failure. It is the method available to system engineers

whose goal is to create of a robust, fault-tolerant system. A

partial failure of a system may easily halt the operation of

the entire system. So, many distributed systems use the

checkpoint/rollback recovery technique [7] which allows a

system to continue its process after an appropriate recovery

action is taken after failure occurs. Normally, processors

checkpoints must be stored in disk-based non-volatile

storage. Although non-volatile storage can protect against

hardware and power failures, the latency of writing

checkpoints to a hard disk and reading from the disk incurs

significant overhead for the system and may result in

significant performance degradation.

There are various techniques [10] to minimize this

source of overhead. These techniques include incremental

checkpointing, memory exclusion and compression.

However, the performance of non-volatile storage medium

remains a major concern with all of these techniques for the

distributed systems.

 Diskless Checkpointing [4] [6] is a technique for

storing the checkpoint of a long-running process on a

distributed system without relying on non-volatile storage.

It reduces the performance bottleneck of normal

checkpointing on distributed systems. Diskless

checkpointing makes checkpoint/rollback recovery is

possible in distributed computing in which non-volatile

storage is not readily available, for example in mobile

computing systems the non-volatile storage will not readily

available. A problem faced by diskless checkpointing is the

increased usage of memory incurred by its implementation.

So, a diskless checkpointing scheme should reduce the

usage of memory as much as possible.

 Diskless checkpointing methods fall into three

categories: neighbour based [1] [3], parity-based, and

Reed-Solomon coding-based [1]. In neighbour based

diskless checkpointing, each processor saves its

checkpoints in the memory of nearby processors. Each

checkpoint is stored in its entirety in peer memory, and no

coding is involved. Parity-based scheme use a predefined

checkpoint processor to save the parity codes of the

checkpoints taken by all the processors using XOR

operations. The Reed-Solomon coding-based technique

encodes checkpoints of multiple processors using Galois

Field arithmetic. When a fault occurs in the system, a

consistent checkpoint can be restored for each failed

processor through the decoding process.

Existing parity-based and Reed-Solomon coding-

based techniques usually require more pre-assigned

processors for checkpointing the encoded data. These

checkpoint processors are not participants of the original

system, and their addition increases failure probability. In

neighbour based system saving checkpoints in peer

processors reduce the processor speed because of large

amount of data in main memory. To reduce the size of the

checkpoint data we use Lempel-Ziv-Welch (LZW)

compression technique. This reduces the amount of

checkpoint data to be stored in main memory and increases

the processor speed. Then to increase the fault tolerance

rate the failures are distributed among nodes in different

groups.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100765

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

837

II. RELATED WORK

 Diskless checkpointing was proposed to avoid

overhead associated with non-volatile storage. Traditional

diskless checkpointing methods [9] were classified into the

following categories: neighbor-based, parity-based, and

Reed-Solomon code-based. In neighbour based diskless

checkpointing, each processor stores its checkpoints in the

memory of nearby processors. When a processor fails, the

checkpoint data can be recovered from the corresponding

checkpoint processor. The neighbor-based checkpointing

scheme [5] has the following three categories: mirroring

[2], pairing [2] and ring structured [1].

A. Neighbour Based Scheme:

In mirroring scheme [2], each processor in the

distributed system is assigned a separate checkpoint

processor in which it stores checkpoints. The pairing

scheme organizes the distributed processors into pairs.

Each processor sends checkpoints to its neighbor in the pair

and, in return, receives and stores checkpoints for the

neighbour processor. Therefore, separate checkpoint

processors are not necessary. The ring-structured scheme

combines all processors into a virtual ring. Each processor

sends its checkpoints to the following nearby processor.

The neighbor-based approach is simple. However, a failed

processor cannot recover its state if its partner or neighbor

storing its checkpoint fails at the same time.

B. Parity Based Scheme:

The parity-based diskless checkpointing technique

[2] requires that all distributed processors have to take

checkpoints, and the parity data for that checkpoint is saved

in the main memory of its parity processor. When an

application processor fails, the parity processor and all the

other processors in that distributed system still working

will cooperate to decode the last checkpoint for the failed

processor. Therefore, the amount of checkpoint data to be

stored is less in the parity-based technique. At the same

time, the time overhead for checkpointing and failure

recovery operations depends on the number of application

processors in the system.

C. Reed-Solomon Code Based Scheme:

The Reed-Solomon code based diskless

checkpointing technique works by encoding the

checkpoints of n application processors to generate an extra

set of k distinct checksum data. These k pieces of encoded

information are stored at k dedicated checkpoint

processors. When some application processors fail, the

system is able to decode the original checkpoints for each

of the failed application processors as long as the total

number of failed processors (including both application

processors and checkpoint processors) is no more than k.

Reed-Solomon erasure code is used for encoding and

decoding purposes.

III. PROPOSED SYSTEM

A. System Model

Consider a distributed system with n processors

(P0, P1, P2,Pn-1) that are connected by a wired are wireless

network. Assume that a task is divided into subtasks and

are distributed among n processors. Subtasks communicate

with each other by passing messages between them. Every

processor in the system takes checkpoint according to some

criteria. The checkpoint data is compressed using Lempel-

Ziv-Welch compression technique. Then the compressed

data is passed to the peer processes. The processes form a

many groups. When failure occurs the failures are

distributed among different groups and are recovered using

the checkpoint data stored in the processes.

B. Operation Of The Proposed Model

 The goal of the system is to tolerate more failures

and to reduce the amount of data to be stored in main

memory. To reduce the size of the checkpoint data that are

passed to the peer processes are compressed using LZW

compression technique. Every processor takes the

checkpoint data in a particular time interval. Checkpoint

data is compressed and transferred through the network to

the peer processes. Compression also maximizes the

effective bandwidth because less data is transferred. The

principle of compression is to replace repetitive data

patterns with compact representation. LZW compressor is

used for compressing the checkpoint data.

LZW is referred to as a substitutional or

dictionary-based encoding algorithm. The algorithm builds

a data dictionary of data occurring in an uncompressed data

stream. Patterns of data or substrings that are identified in

the data stream and are matched to entries in the dictionary.

If the substring or the data pattern is not available in the

data dictionary, a code for that data is created based on the

content of the substring, and the particular code for that

phrase is stored in the data dictionary. The code for that

phrase is then written to the compressed output stream.

When a reoccurrence of a substring is identified in the

checkpoint data, the phrase of the substring already stored

in the data dictionary is written to the output. Because the

phrase value of the code has a physical size that is smaller

than the substrings it represents, data compression is

achieved. LZW goes beyond most dictionary-based

compressors in that it is not necessary to preserve the

dictionary to decode the LZW data stream. This can save

some amount of space when storing the LZW-encoded

data.

The LZW compression algorithm is as follows.

w := NIL;

while (there is input)

{

K := next symbol from input;

if (wK exists in the dictionary)

{

w := wK;

}

else

{

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100765

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

838

output (index(w));

add wK to the dictionary;

w := K;

}

}
Alg.1 LZW compression algorithm

Decompression technique is the reverse process of

the compression technique. Decompression reads the

encoded data and adds the code to the data dictionary .The

encoded data is replaced by string values.

C. System Design

 To increase the system capability to tolerate high

fault rates, the failed processes should be distributed among

the groups. In a modern multiprocessor, multicore nodes,

the failure of a single node results in the failure of several

processes, so if all the processes of a node belong to the

same group, a node failure will lead to several failures

within that group. If we distribute all the processes of one

node among different groups, then one node failure will

lead to one single process failure in several groups, instead

of several process failures within the same group.

Fig 1. Grouping Strategy

As per Fig.1, we create 4 groups (4 colors) of 8 processors

each. When a node fails, each group will have one

processor failure, which is the best possible distribution of

the failures among the groups. This system can tolerate up

to 4 node failures (16 processor failures) and it will be able

to recover the lost checkpoints in all the groups.

The encoding process will be significantly faster

for 4 groups of 8 processors than for 1 group of 32

processors because the groups can encode in parallel. All

the processes in a group must be from different nodes. We

will divide the whole system in sectors. A sector is a group

of M nodes. A sector is not a group of processes. A sector

can be viewed in hardware level as a group of nodes and in

a virtual level as a group of groups.

Fig 2.Partitioning the system into sectors and groups.

 As per Fig.2 When the groups are built using the

presented strategy, the failures will be distributed among

the groups then we can use small groups to encode. The

failures can affect several nodes, if the groups are smaller

than the number of failed nodes, the system will be unable

to recover the data. It is important to find a group size that

guaranties a good tradeoff between encoding speed and

capability to tolerate high fault rates. However, even if the

number of failures increases linearly with the system size,

the number of nodes affected per failure should not

increase that fast. If the average number of nodes affected

per failure remains constant, then the group‟s size can

remain constant and then the encoding time and the

checkpointing performance will remain constant. Using

this model, every supercomputer administrator can choose

the size of the groups to tolerate 50% percentage of failures

and perform a fast encoding.

IV. CONCLUSION

Diskless checkpointing is an approach that

provides high-performance and reliable storage for

intermediate or temporary data, such as checkpoint files.

To tolerate the less memory space of main memory, a

compression method is used. To compress the checkpoint

data LZW compression method is used which is a lossless

compression algorithm. LZW is dictionary based algorithm

which replaces the repeated patterns with dictionary entry.

There is no need to pass the dictionary for decompression.

This reduces the amount of data to be stored in main

memory. By reducing the checkpoint data the network

bandwidth also effectively used. To tolerate multiple

processor failure the systems are partitioned into groups

and failures are distributed in to the groups. During failure

the checkpoint data are recovered from the peer processes

and the failed system is recovered using that data.

REFERENCES

[1] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca,

and J. Dongarra, “Fault Tolerant High Performance Computing by a

Coding Approach,” Proc. ACM Symp. Principles and Practice of
Parallel Programming (PPoPP ‟05), pp. 213-223, June 2005.

[2] T.-C. Chiueh and P. Deng, “Evaluation of Checkpoint Mechanisms

for Massively Parallel Machines,” Proc. IEEE Symp. Fault Tolerant
Computing (FTCS ‟96), pp. 370-379, June 1996.

[3] Ge-Ming Chiu, Member, Jane-FerngChiu,(2011) „A New Diskless

Checkpointing Approach for Multiple Processor Failures‟, IEEE
transactions on dependable and secure computing, vol.8, no.4.

[4] J.S. Plank, K. Li, and M.A. Puening, Diskless Checkpointing,”

IEEE Trans. Parallel Distributed Systems, vol. 9, no. 10, pp. 972-
986, Oct. 1998.

[5] L.M. Silva and J.G. Silva, “An Experimental Study about Diskless

Checkpointing,” Proc. Euromicro Conf. EUROMICRO ‟98), pp.
395- 402, Aug. 1998.

[6] Doug Hakkarinen and Zizhong Chen,” N-Level Diskless
Checkpointing,” IEEE International Conference on High

Performance Computing and Communications, 2009.

[7] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,”

ACMComputing Surveys, vol. 34, no. 3, pp. 375-408, Sept. 2002.

[8] Leonardo, Naoya, ”Distributed Diskless Checkpoints for Large
Scale Systems”, IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, 2010.

[9] Charng-dalu, “Scalable diskless checkpointing for large parallel
systems”, Phd Thesis, University of Illinois at Urbana-Champaign,

2005.

[10] Z. Chen and J. Dongarra, “A Scalable Checkpoint Encoding
Algorithm for Diskless Checkpointing,” Proc. IEEE

Symp.HighAssurance Systems Eng. Symp. (HASE ‟08), pp. 71-79,

Dec. 2008.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100765

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

839

