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Abstract :- Checkpointing is a technique to perform fault 

tolerance in distributed computing systems. Diskless 

checkpointing stores checkpoint data in main memory instead 

of storing it in a secondary memory like disks. Diskless 

checkpointing is a technique to tolerate multiple failures in a 

distributed system using simple checkpointing and failure 

recovery, without depends on selected checkpoint processors. 

A neighbour based checkpoint approach stores checkpoint in 

checkpoint storage nodes which can tolerate only less number 

of failures in a single step and the checkpoint data in the main 

memory reduces the speed of the processor. To reduce the 

memory space required for saving checkpoints and increase 

the fault tolerance rate in distributed environment a LZW 

compression technique is used. This reduces the amount of 

checkpoint data to be stored in memory. LZW is a dictionary 

based compressor which replaces repetitive data patterns with 

compact representation. No need to pass the dictionary to the 

decompressor in LZW compression method. To tolerate more 

failures in the system the failure processes are distributed to 

different groups and recovered. 
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I. INTRODUCTION  

Fault tolerance is one of the most desirable 

properties for many distributed or parallel computing 

systems. Previous fault tolerance methods involved in 

checkpointing the system state and restore it when a system 

is in failure. It is the method available to system engineers 

whose goal is to create of a robust, fault-tolerant system. A 

partial failure of a system may easily halt the operation of 

the entire system. So, many distributed systems use the 

checkpoint/rollback recovery technique [7] which allows a 

system to continue its process after an appropriate recovery 

action is taken after failure occurs. Normally, processors 

checkpoints must be stored in disk-based non-volatile 

storage. Although non-volatile storage can protect against 

hardware and power failures, the latency of writing 

checkpoints to a hard disk and reading from the disk incurs 

significant overhead for the system and may result in 

significant performance degradation. 

There are various techniques [10] to minimize this 

source of overhead. These techniques include incremental 

checkpointing, memory exclusion and compression. 

However, the performance of non-volatile storage medium 

remains a major concern with all of these techniques for the 

distributed systems. 

       Diskless Checkpointing [4] [6] is a technique for 

storing the checkpoint of a long-running process on a 

distributed system without relying on non-volatile storage. 

It reduces the performance bottleneck of normal 

checkpointing on distributed systems. Diskless 

checkpointing makes checkpoint/rollback recovery is 

possible in distributed computing in which non-volatile 

storage is not readily available, for example in mobile 

computing systems the non-volatile storage will not readily 

available. A problem faced by diskless checkpointing is the 

increased usage of memory incurred by its implementation. 

So, a diskless checkpointing scheme should reduce the 

usage of memory as much as possible. 

  Diskless checkpointing methods fall into three 

categories: neighbour based [1] [3], parity-based, and 

Reed-Solomon coding-based [1]. In neighbour based 

diskless checkpointing, each processor saves its 

checkpoints in the memory of nearby processors. Each 

checkpoint is stored in its entirety in peer memory, and no 

coding is involved. Parity-based scheme use a predefined 

checkpoint processor to save the parity codes of the 

checkpoints taken by all the processors using XOR 

operations. The Reed-Solomon coding-based technique 

encodes checkpoints of multiple processors using Galois 

Field arithmetic. When a fault occurs in the system, a 

consistent checkpoint can be restored for each failed 

processor through the decoding process. 

Existing parity-based and Reed-Solomon coding-

based techniques usually require more pre-assigned 

processors for checkpointing the encoded data. These 

checkpoint processors are not participants of the original 

system, and their addition increases failure probability. In 

neighbour based system saving checkpoints in peer 

processors reduce the processor speed because of large 

amount of data in main memory. To reduce the size of the 

checkpoint data we use Lempel-Ziv-Welch (LZW) 

compression technique. This reduces the amount of 

checkpoint data to be stored in main memory and increases 

the processor speed. Then to increase the fault tolerance 

rate the failures are distributed among nodes in different 

groups. 
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II. RELATED WORK 

 Diskless checkpointing was proposed to avoid 

overhead associated with non-volatile storage. Traditional 

diskless checkpointing methods [9] were classified into the 

following categories: neighbor-based, parity-based, and 

Reed-Solomon code-based. In neighbour based diskless 

checkpointing, each processor stores its checkpoints in the 

memory of nearby processors. When a processor fails, the 

checkpoint data can be recovered from the corresponding 

checkpoint processor. The neighbor-based checkpointing 

scheme [5] has the following three categories: mirroring 

[2], pairing [2] and ring structured [1]. 

A. Neighbour Based  Scheme: 

In mirroring scheme [2], each processor in the 

distributed system is assigned a separate checkpoint 

processor in which it stores checkpoints. The pairing 

scheme organizes the distributed processors into pairs. 

Each processor sends checkpoints to its neighbor in the pair 

and, in return, receives and stores checkpoints for the 

neighbour processor. Therefore, separate checkpoint 

processors are not necessary. The ring-structured scheme 

combines all processors into a virtual ring. Each processor 

sends its checkpoints to the following nearby processor. 

The neighbor-based approach is simple. However, a failed 

processor cannot recover its state if its partner or neighbor 

storing its checkpoint fails at the same time. 

B. Parity Based Scheme: 

The parity-based diskless checkpointing technique 

[2] requires that all distributed processors have to take 

checkpoints, and the parity data for that checkpoint is saved 

in the main memory of its parity processor. When an 

application processor fails, the parity processor and all the 

other processors in that distributed system still working 

will cooperate to decode the last checkpoint for the failed 

processor. Therefore, the amount of checkpoint data to be 

stored is less in the parity-based technique. At the same 

time, the time overhead for checkpointing and failure 

recovery operations depends on the number of application 

processors in the system. 

C. Reed-Solomon Code Based Scheme: 

The Reed-Solomon code based diskless 

checkpointing technique works by encoding the 

checkpoints of n application processors to generate an extra 

set of k distinct checksum data. These k pieces of encoded 

information are stored at k dedicated checkpoint 

processors. When some application processors fail, the 

system is able to decode the original checkpoints for each 

of the failed application processors as long as the total 

number of failed processors (including both application 

processors and checkpoint processors) is no more than k. 

Reed-Solomon erasure code is used for encoding and 

decoding purposes. 

 

III. PROPOSED SYSTEM 

A. System Model 

Consider a distributed system with n processors 

(P0, P1, P2,Pn-1) that are connected by a wired are wireless 

network. Assume that a task is divided into subtasks and 

are distributed among n processors. Subtasks communicate 

with each other by passing messages between them. Every 

processor in the system takes checkpoint according to some 

criteria. The checkpoint data is compressed using Lempel-

Ziv-Welch compression technique. Then the compressed 

data is passed to the peer processes. The processes form a 

many groups. When failure occurs the failures are 

distributed among different groups and are recovered using 

the checkpoint data stored in the processes. 

B. Operation Of The Proposed Model 

 The goal of the system is to tolerate more failures 

and to reduce the amount of data to be stored in main 

memory. To reduce the size of the checkpoint data that are 

passed to the peer processes are compressed using LZW 

compression technique. Every processor takes the 

checkpoint data in a particular time interval. Checkpoint 

data is compressed and transferred through the network to 

the peer processes. Compression also maximizes the 

effective bandwidth because less data is transferred. The 

principle of compression is to replace repetitive data 

patterns with compact representation. LZW compressor is 

used for compressing the checkpoint data.  

LZW is referred to as a substitutional or 

dictionary-based encoding algorithm. The algorithm builds 

a data dictionary of data occurring in an uncompressed data 

stream. Patterns of data or substrings that are identified in 

the data stream and are matched to entries in the dictionary. 

If the substring or the data pattern is not available in the 

data dictionary, a code for that data is created based on the 

content of the substring, and the particular code for that 

phrase is stored in the data dictionary. The code for that 

phrase is then written to the compressed output stream. 

When a reoccurrence of a substring is identified in the 

checkpoint data, the phrase of the substring already stored 

in the data dictionary is written to the output. Because the 

phrase value of the code has a physical size that is smaller 

than the substrings it represents, data compression is 

achieved. LZW goes beyond most dictionary-based 

compressors in that it is not necessary to preserve the 

dictionary to decode the LZW data stream. This can save 

some amount of space when storing the LZW-encoded 

data.  

The LZW compression algorithm is as follows. 

w := NIL; 

while (there is input) 

{ 

K := next symbol from input; 

if (wK exists in the dictionary)  

{ 

w := wK; 

}  

else 

{ 
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output (index(w)); 

add wK to the dictionary; 

w := K; 

} 

} 
Alg.1 LZW compression algorithm 

 
Decompression technique is the reverse process of 

the compression technique. Decompression reads the 

encoded data and adds the code to the data dictionary .The 

encoded data is replaced by string values.  

C. System Design  

  To increase the system capability to tolerate high 

fault rates, the failed processes should be distributed among 

the groups. In a modern multiprocessor, multicore nodes, 

the failure of a single node results in the failure of several 

processes, so if all the processes of a node belong to the 

same group, a node failure will lead to several failures 

within that group. If we distribute all the processes of one 

node among different groups, then one node failure will 

lead to one single process failure in several groups, instead 

of several process failures within the same group. 

 

 
 

Fig 1. Grouping Strategy 
 

As per Fig.1, we  create 4 groups (4 colors) of 8 processors 

each. When a node fails, each group will have one 

processor failure, which is the best possible distribution of 

the failures among the groups. This system can tolerate up 

to 4 node failures (16 processor failures) and it will be able 

to recover the lost checkpoints in all the groups.  

The encoding process will be significantly faster 

for 4 groups of 8 processors than for 1 group of 32 

processors because the groups can encode in parallel. All 

the processes in a group must be from different nodes. We 

will divide the whole system in sectors. A sector is a group 

of M nodes. A sector is not a group of processes. A sector 

can be viewed in hardware level as a group of nodes and in 

a virtual level as a group of groups. 

 
 

Fig 2.Partitioning the system into sectors and groups. 
 

 As per Fig.2 When the groups are built using the 

presented strategy, the failures will be distributed among 

the groups then we can use small groups to encode. The 

failures can affect several nodes, if the groups are smaller 

than the number of failed nodes, the system will be unable 

to recover the data. It is important to find a group size that 

guaranties a good tradeoff between encoding speed and 

capability to tolerate high fault rates. However, even if the 

number of failures increases linearly with the system size, 

the number of nodes affected per failure should not 

increase that fast. If the average number of nodes affected 

per failure remains constant, then the group‟s size can 

remain constant and then the encoding time and the 

checkpointing performance will remain constant. Using 

this model, every supercomputer administrator can choose 

the size of the groups to tolerate 50% percentage of failures 

and perform a fast encoding. 
 

IV.  CONCLUSION 

Diskless checkpointing is an approach that 

provides high-performance and reliable storage for 

intermediate or temporary data, such as checkpoint files. 

To tolerate the less memory space of main memory, a 

compression method is used. To compress the checkpoint 

data LZW compression method is used which is a lossless 

compression algorithm. LZW is dictionary based algorithm 

which replaces the repeated patterns with dictionary entry. 

There is no need to pass the dictionary for decompression. 

This reduces the amount of data to be stored in main 

memory.  By reducing the checkpoint data the network 

bandwidth also effectively used. To tolerate multiple 

processor failure the systems are partitioned into groups 

and failures are distributed in to the groups. During failure 

the checkpoint data are recovered from the peer processes 

and the failed system is recovered using that data. 
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