

Towards Release Planning Generic Model: Market-driven software development
perspective
Bassey Isong

Computer Science and Information Systems, University of Venda,
Private Bag X5050, Thohoyandou 0950, South Africa

Abstract

Several techniques to achieve software release
planning (RP) in market-driven software development
(MDSD) exist. One of such approaches is prioritization
due to large volume of requirements that often can’t be
implemented at once. However, the task of selecting
optimal sets of features for a particular release is
challenging due to complex and fuzzy dependencies
that often impact RP decisions negatively. In addition,
existing RP models are not generic and known to only
address limited requirements selection factors, making
it impossible for engineers to choose a model that suits
a particular application. Therefore, a generic RP
model that supports all selection factors and allows
users to define their needed factors is indispensable. To
this end, the objective of this paper is to bring into light
the challenges of RP, and proposed an approach for
representing dependencies among requirements. In
addition, the study proposes a generic framework for
RP based on the EVOLVE* Model. The proposed
model will also allows for re-planning, assist MDSD
organization to improve the quality of the selection and
deliver quality products with attractive sets of features
to have a competitive edge.

1. Introduction

In today’s e-society, software development has become
extremely a complicated and a critical activity due to
extensive advanced technology usage, the growing
awareness for software products usage and market
demand. However, such remarkable progresses have
not yet been balanced by software engineering
practices. Requirements engineering (RE) is one of the
key activities that deals with the discovery,
documentation, communication and implementation of
software requirements [1]. Unfortunately, RE
processes are not sufficiently understood and poses
huge challenges to organizations. The situation is
exacerbated in today’s market-driven software
development (MDSD) environment where the

requirements are characterized by large volumes and
continuous changes throughout the course of a project
[2],[3]. This stems from the fact that MDSD have no
specific identifiable customers and the requirements are
often invented [4].

MDSD objective is to attain a competitive advantage
by taking a reasonable market share, attract wide range
of customers and amassing profits [2]. This is usually
achieved by a good software release planning (RP)
[5],[6],[7]. It constitutes a determinant factor of the
success or failure of a company’s product in the
market. However, achieving such objectives is
challenging and though is critical to software product
development [5]. RP is one of the most recognized
activities that challenged several organizations
developing for the mass market [2],[8],[9]. The
problems that stems from RP has been described as
“wicked” [10], involving a complex decision-making
activity. In particular, such decisions have become even
more complex with large number of stakeholders since
it often yields more requirements that cannot be
implemented at once [8]. This requires that
requirements should be prioritized in order to that the
most important ones are met by the earliest product
releases.

Prioritizing requirements has been recognized as a sub-
problem of RP, a crucial activity involving the
selection of requirements based on a set of criteria such
as scheduling, stakeholders, resource planning and
interdependencies [11]. Regrettably, selecting
requirements based on priorities has been known to be
difficult, if not impossible since most requirements
cannot be treated independently due to complex
dependences [3],[5]. Consequently, decisions made to
one or many requirements may impact others in ways
not expected during development [12]. Hence,
dependencies among requirements have to be taken
seriously in order to enhance the process of
prioritization which in turn facilitates quality product
release plan in MDSD. Planning a product release in
MDSD inevitably involves dealing with all categories

498

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

of dependencies. With the complexity of RP,
requirements dependencies pose an important research
area since little attention has so far been gained in
existing literature. Research in this area has been
focused mostly on specific problem or a development
activity which does not specifically address RP
problems [3].

In addition, several software RP models have been
proposed and some are validated, while some are not
yet validated [13]. These models have been designed to
support RP either on strategic or operational levels in
MDSD and as well, improve the quality of feature
selection [14]. Unfortunately, there are not generic and
not applicable in all situations. Each model has been
known to addressing only little selection factors: soft
and hard constraints. In addition, re-planning is not
addressed by most of the models. As a consequence, it
becomes difficult to choose a model that is suitable for
a particular application. We therefore consider it
important to have a generic RP model that combines all
these factors and allow engineers to make their choice
of factors in order to generate a good release plan for a
product. Thus, the objective of this paper is to discuss
the nature of prioritization and dependencies challenges
during software RP, and propose an approach to
identify dependencies among requirements. In addition,
we propose generic framework for RP model based on
EVOLVE* model with the goal of enhancing the RP
complexity, taking into account all requirements
selection factors as well as re-planning of release. With
this proposed approach, software engineers can be
assisted in achieving a fast and quality product plan
that adds values to customer needs.

The rest of the paper is organized as follows: RP is
discussed in Section 2, prioritization and dependences
challenges in Section 3 and 4 respectively. In Section 5
we discuss dependences effects on priority, while in
Section 6 presents existing RP solution models. Section
7 and 8 presents the proposed dependences
identification approach and a framework for RP model
respectively. Finally, Section 9 is the paper conclusion.

.
2. Release Planning

Software RP is an important and a continuous activity
in MDSD that has attracted significant attention in
recent years. It is concern with the process of deciding
on what subsets of requirements to implement during
the course of product development and in which
releases of the product. In other words, RP is aimed at
selecting subset of requirements that can yield optimal

realization of products in a certain releases [8],[15].
However, in MDSD organizations RP activity poses a
huge challenge since there are several factors (i.e.
technical, resource, risk and budget constraints) that
influence the decision of selecting requirements - hard
constraints and soft factors [13]. For instance, during
the course of a project, many different decisions
regarding product release plan has to be made like
feature value and urgency, available resources,
milestones, stakeholder concerns, available market
opportunity, risks, product strategies, features
interdependencies, cost and so on [5],[7]. All these
factors are critical to the success of the products in the
market, albeit is a challenging task for release planners.

.In the same vein, the value and cost of individual
features are affected by the existence of relationship of
diverse aspects which are roughly tied to fixed delivery
date and set of available resources, etc. The complexity
of RP is dependent on the accurate estimation of the
cost and value [8],[9]. The implication is that, if cost is
underestimated, deadlines may be missed while over-
estimating cost may lead to the exclusion of valuable
requirements. Accordingly, if value is over or under
estimated, the result is products that does not bring into
line, the actual market needs and consequently, a
failure of the product. Consequently, the absence of a
good RP will affect customer’s satisfactions, project
time, budget, and perhaps, a market share loss [15].
Thus, good RP approach should be in place in order to
enhance the quality and speed of product release plan.
Approaches such as prioritization, resource demand
estimation, and requirements selection can be used to
achieve RP in MDSD.

3. Requirements Prioritization

In MDSD today, due to the existence of large potential
customers and stakeholders, large volume of
requirements are produced that often cannot be
implemented at the same time. This requires that the
correct subsets of features which can add value to
customers and be implemented within budget for an
organizational success in the market for next product
releases have to be selected. Prioritization activity is an
essential step leading to good decisions taking
involving product planning for multiple releases. It is
the activity during which the most important software
requirements, their implementation and testing order
throughout the development lifecycle are established
for a system [1]. It allows software engineers to focus
on a subset of all the requirements, and implement
them in the earliest product releases [8]. One greatest

499

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

challenge is how to prioritize large number of
requirements.

This however affects RP negatively, and prioritization
has been recognized as a very challenging requirements
activity with no effective and systematic methods to
perform it in most software organizations [16].
Accordingly, Karlsson et al [17] stated that to prioritize
requirements, domain knowledge and skills of
estimation is critical for success. But in practice,
priorities determination is difficult and is not simple to
identify the aspects on the basis of which its decisions
should be based [11]. Priority itself is a complex
mixture of different aspects ranging from importance,
cost, time, stakeholders, penalty to risk and where each
is an extremely multifaceted concept [18]. For example,
requirements importance could be a composite of
implementation urgency, product architecture, strategic
importance of the organization, etc. [11],[18].
Moreover, decision makers ought to take into account
these various aspects before deciding the
implementation scheduling of the requirements [18].
Requirements themselves do not exist in isolation, and
priorities are always complex in relationship.
Consequently, their importance varies from
release/customers to another.

Several approaches to perform prioritization of
requirements exist such as the analytic hierarchy
process (AHP), greedy-type algorithms, cumulative
voting, the 100-dollar Test, numerical assignment
(grouping), requirements triage, Wiegers' Method, top-
Ten requirements, planning games, etc [8],[19]. These
approaches are categorized as either methods based on
giving values or negotiation approaches [17]. Their
drawbacks largely depends on their level of scalability,
none consideration of different stakeholder views, RP
effort constraints, etc [19]. In addition, they have fixed
model and do not allow requirements changes or full
priorities and in some cases, priorities are always
influenced by the people involved. Other approaches
are based on decision support tools with respect to RP
such as the EVOLVE family, etc[13],[15].

4. Requirements Dependences

Software requirements are not isolated entities rather
they are related to and impact one another in ways that
is considered complex emanating from cost/value
bonding. Consequently, most developed individual
requirements cannot be treated separately during
software development [9]. The implication is that
several other development activities like RP are
affected in a way not expected. For instance, one or

more requirements may affect others by either
constraining their implementation order, cost, or value
to the customer. In practice, not all requirements are
related or affect each other. Their levels of relationship
are categorized. For example, a study by [3] shows that
only about 20% of the requirements accounts for about
75% of the dependencies, in a software system and
MDSD is known to have more value-related
dependencies that bespoke.

Though, less work has been done in the area of
requirements interdependencies, few strategies for
identifying and managing interdependencies exist. The
study by [9] identified three types of requirements
dependencies: structural, constraints, and cost-value
interdependencies. Another study, [3] proposed a
classification method for interdependencies such as
functional related (AND, REQUIRES) and value
related (ICOST, CVALUE) for bespoke and MDSD
respectively. Others are OR and TEMPORAL
dependencies. In addition, visualization method was
applied for the ease of interdependencies identification
to facilitate RP. Johan et al [20], also work on
automated similarity analysis which uses language
tools to analyze sets of requirements based on [3].
Results obtained shown that the technique only
identified similarities between requirements with a
correct classification of up to 16% of the actual
dependencies.

5. Dependences Impacts on Priority

Requirements dependencies itself is not considered
problematic, but the manner they affects a number of
other development activities and decisions, makes them
problematic and complex [3],[9]. In MDSD,
interdependencies among requirements are value-
related which tends to impacts requirements priority
negatively with respect to RP in an unanticipated way.
For instance, the selection process during RP is not
always easy as thought because the relationship among
requirements is complex. Consequently, the choice of
one requirement may warrant the selection of one or
several other requirements as well. For example,
selecting a highly prioritized requirement Req1 may
trigger the selection of a costly but lowly prioritized
requirement Req2. This implies that Req1 will not be
implemented without firstly implementing Req2.

All this contributed to several companies having a
serious challenge leading to bundling related
requirements without considering the cost-value
complexity relationships among them which in turn
give rise to poor customer satisfaction, product failure

500

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

in the market, etc. In the perspective of RP,
requirements dependencies is crucial but hardly ever
identified clearly and have been deemed complex and
fuzzy in nature [3]. Therefore, the understanding and
identification of these relationships is indispensable in
order to avoid costly mistakes.

6. Release Planning Models

Several models for strategic RP exist in literature, with
most of them providing decision support for RP while
others deals with the issues of prioritization and
selection techniques of requirements [9],[19],[21]. The
models are used facilitate RP decisions taking in to
account several selection factors that were not
addressed by prioritization techniques. In a systematic
literature review carried out by [13] on strategic RP
models, analysis revealed that the existence of twenty
four (24) models out of which 23 (96%) models are
validated in both industry and academia while one (4%)
not yet validated. List of all the models studied can ie
found at [13]. In addition, about 83% of the models are
common for bespoke and MDSD while 17% are
suitable for MDSD only. Further analysis by [13]
shows that the dominant models are the one belonging
to the EVOLVE-family and ReleasePlanner tool [13].
For instance, the EVOLVE-family constitutes the
largest group of strategic RP models, which is about 16
models. In this group, EVOLVE+ and EVOLVE* are
the direct derivative of EVOLVE. Others extensions
are EVOLVEext, Evolutionary EVOLVE+, S-EVOLVE
and F-EVOLVE*. EVOLVE* is one of the best models
in this group which is based on genetic algorithm,
taking account the all the technical constraints during
potential release plans [10],[14],[15]. Its architecture is
made up of the Modeling, Exploration and
Consolidation phases [15].

Fig. 1: Requirements selection factors [13]

However, one of the greatest issues with the existing
RP models is the fact that most of the approaches focus

on a limited set of requirements selection factors: soft
factors and hard constraints (see Fig. 1). Furthermore,
majority of models placed emphasis on hard constraints
while about 58% include soft factors [13]. These
requirements selection are critical to the quality of a
given product release plan. Consequently, the models
are not generic and cannot be applied to all situations or
take re-planning into account. The bottom line is that, it
is difficult to make a choice existing model which is
suitable for a particular product. We therefore deem it
imperative to have a RP model that supports all
requirements selection factors and allow users to define
which requirements selection factors are needed in
order to generate a fast and quality release plan for a
product.

7. Approach for Dependences Identification

The priority of requirements is critical to the success of
RP, but is often crippled by requirements
interdependencies. This stems from lack of explicitness
which makes them complex to identify and managed
coupled with their fuzziness nature [3]. Thus, to
identify explicitly the nature of dependencies and
support human decisions during the course of RP, an
intermediate representation is indispensable. In this
section, we propose an approach based on [3], utilizing
dependency graph theory which we called requirements
dependencies graph (RDG). The representation is
simplified by the computation of both in-degrees and
out-degrees for each requirement, R. The goal of the
representation is to support or facilitate possible and
good way of scheduling requirements set in a release
plan. Our intuition is that, the representation can go a
long way to offer clear and fast identification of all
forms of dependences (such as singular, clusters or
highly dependent requirements [3]) at a quick glance.
These are discussed as follows:

Definition 1: [Dependency Type (DT)] Based on [3],
we first of all classify these dependences into six types:
AND, REQUIRES, TEMPORAL, IVALUE, ICOST
and OR. And R is defined in the following way:

Definition 2: [RDG] Given set of requirements to be
selected for next product release, R and let G < V, D,
DT > represent the RDG, where V is a finite set of
nodes representing the requirements R and D = V × V
× DT represents the set of various edges with
dependency types: DT ={AND, REQUIRES,
TEMPORAL, IVALUE, ICOST, OR}. The
computation for the values of DT is described as
follows:

501

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

Definition 3: [Out-degree] The out-degree of R є v is
the number of DT emanating from that node. The out-
degree of v is computed by |A(v)|.

Definition 4: [In-degree]The in-degree of R є v is the
number of DT incident on that node. The in-degree of v
is computed by |I(v)|.

A typical example is illustrated in Fig. 2 and the
corresponding in-degrees and out-degrees for each R
are presented in Table 1. The representation is simple
and easy to comprehend how requirements relate with
one another. The nodes are the requirements while the
edges are the dependencies types. Important
conclusions about require drawn by merely looking at
the graph. With Table 1, singular requirements (e.g.
R8), clustered (e.g. R6) and heavily depended
requirements (e.g. R9) can be easily identified.

Fig. 2: Requirements dependencies graph

By following the recommendations in [9], with this
representation we can see easily requirements with no
relationship (i.e. singular requirements) and can be
scheduled for any release as “top-off” depending on the
amount of available development resources from an
interdependencies perspective. Accordingly, risk can be
minimized by scheduling requirements that are highly
couple to several others for early release, while the
clustered ones can be planned for any release as long as
all involved requirements are planned for the same
release.

Table 1: RDG In-degrees and Out-degrees

R ε v A(v) I(v)

R1 2 2

R2 - 1

R3 2 2

R4 3 -

R5 1 1

R6 - 3

R7 3 2

R8 - -

R9 4 2

R10 1 3

One important limitation of this proposed approach is
when it comes to representing large volume of
requirements. MDSD often have large requirements
and it will be challenging representing them this way,
except by automation of the dependencies. We however
recommend more research in this area in order to
explore more possibilities of identifying dependencies
in requirements. We consider it important because
knowing how requirements relates with one another
will significantly help in speeding up more accurate
cost and schedule analysis during product RP.

8. A Framework for RP Model

In this section, we describe the structure of our
proposed model which is based on the EVOLVE*
architecture: modelling phase, exploration phase and
the consolidation phase (see Fig. 3). We consider the
framework generic because it is designed to take into
account all the hard constraints and soft factors, giving
users the opportunity to define which selection factor is
required during the course of RP. It serve as a guideline
for developers of RP models to follow in order to
develop models that can provide solutions for all
situations (i.e. planning and re-planning) of software
release. It is iterative is iterative in nature and we
present here a high level description of the framework.

502

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

8.1. Modelling Phase

At this phase depending on the goal (i.e. planning or re-
planning), the repository can be accessed for necessary
requirements selection candidates, etc. Based on the
design of the model in use, the problem is then
formulated considering the soft factors and hard
constraints. Though not all selection factors are useful
in all situations, the basic factors that can influence the
decisions on requirements selection for their particular
case should be chosen. For re-planning problem,
different types of information such as recent plan,
change requests and other release information such as
time, etc are important.

Fig. 3: RP generic framework

8.2. Exploration phase

With the formulated problems and based on the goal,
the actual solution plan generation is done at this phase.
Here model designer can use any algorithm of interest
to achieve the desire objective of a quality and a fast
plan. With the techniques in use, diverse solutions can
be achieved such as the generated plan, re-planning
information like when to re-plan, how to re-plan and
what to re-plan. Consequently, information obtained
will assist in generating attractive sets of features that is
capable of entering the market at the right moment, and
that can generate sufficient revenues to cover
development costs and bring profits to the organization.

8.3. Consolidation phase

This is the last phase which is the decision making
phase. Here, the solution or simply the plans generated
at the exploration phase are presented to the decision
maker for onward evaluation. The decision maker
should study the solutions at hand and analyze them
based on past experience and the context surrounding
the problem. The analysis can contributes to the
problem comprehension, modification of the parts of
the underlying model if need arises and reduce the size
and complexity of next iteration [8]. Several iterations
are necessary until the desire solutions are achieved
which can be used for either planning or re-planning.

9. Conclusion

Release planning is one of the most serious challenges
that confront several software development
organizations that produce software for mass markets.
It has been known as a complex activity and constitutes
a determinant factor of the success or failure of a
company’s product in the market. In this paper, we
have explored some of the challenges faced by RP,
taking prioritization and dependencies into account as
well as strategic RP models. These two activities play
key roles in RP, but the relationship among
requirements makes them challenging activities during
the course of selecting optimal set of requirements for a
particular product release. To this effect, we have
proposed an intermediate representation of
requirements using a directed graph to assist engineers
to quickly and easily identify how requirements are
related and also decide on which requirements to be
scheduled in the next release that is capable of
achieving higher business value. In addition, existing
software RP models do not sufficiently addressed all
the selection factors and do not consider re-planning,
making it cumbersome to choose a good model that is
suitable for a particular situation. To this end, we have
also proposed a generic framework for release planning
solution model based on EVOLVE* architecture to
enhance the quality of software RP. We therefore
conclude that RP model that supports all the hard
constraints and soft factors and which allows for re-
planning will go along way reducing the problems with
RP to the lowest level and improve the quality of the
selection. With good features selection in a release,
MDSD organizations can deliver quality products to
stay ahead of competition in the market.

Our future work will be based on implementing the
approaches discussed in this paper on a real world
system and evaluate their effectiveness.

503

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

10. References

[1] Nuseibeh, B., Easterbrook, S.: “Requirements
Engineering: a Roadmap”. Proceedings of “The Future of
Software Engineering”, pp 35-46 May 2000.

[2] Karlsson, L., Dahlstedt, A.G., Natt, J., Regnell, B. and
Persson, A.: Challenges in Market-Driven Requirements
Engineering - an Industrial Interview Study, Proceedings of
Eighth International Workshop on Requirements
Engineering: Foundation for Software Quality, 2003, pp. 101-
112.

[3] Carlshamre, P. et al.: An industrial survey of requirements
interdependencies in software product release planning. In:
Proceedings of the 5th International Symposium on
Requirements Engineering, Toronto, Canada, 2001, pp. 84-91

[4] Sawyer, P.: Packaged software: Challenges for RE. In
Proceedings of the Fifth International Workshop on
Requirements Engineering: Foundations for Software
Quality(REFSQ 2000), Stockholm, Sweden, 137–142, 2000

[5] Carlshamre, P. “Release Planning in Market- Driven
Software Product Development: Provoking an
Understanding”, Springer, pp. 139-151, 2002

[6] Ruhe, G. “Software Release Planning” University of
Calgary 2500 University Drive NW Calgary, AB T2N 1N4,
Canada, 2004.

[7]G. Ruhe, and D.Greer, “Quantitative studies in software
release planning under risk and resource constraints”,
Proceedings of the 2003 International Symposium on
Empirical Software Engineering (ISESE 2003), IEEE
Computing Society, Los Alamitos, CA, 2003, pp. 262–270.

[8] Pa¨r Carlshamre “Release Planning in Market- Driven
Software Product Development: Provoking an
Understanding”, Springer, pp. 139-151, 2002

[9] Dahlstedt, Å.G., Persson, A.: Requirements
Interdependencies: State of the Art and Future Challenges,
Proceedings of the 9th International Workshop on
Requirements Engineering: Foundation for Software Quality,
2003, pp. 71-80

[10] A. Ngo-The and G. Ruhe, "A systematic approach for
solving the wicked problem of software release planning,"
Soft Computing - A Fusion of Foundations, Methodologies
and Applications, vol. 12, pp. 95-108, 2008.

[11] Lehtola, L. Kauppinen, M. and Kujala, S. Requirements
Prioritization Challenges in Practice, Springer, 2004, pp.
497–508

[12] Regnell, B. and Brinkkemper, S. "Market-Driven
Requirements Engineering for Software Products," in
Engineering and Managing Software Requirements, Berlin
Heidelberg: Springer, 2005, pp. 287-308.

[13] Svahnberg, M. et al. “A systematic review on strategic
release planning models”. Journal of Information and
Software Technology 52, 2010, pp. 237–248

[14] Du, G., McElroy, J., Ruhe, G.: Ad-hoc versus
systematic planning of software releases: a three-staged
experiment, in: Proceedings of the 7th International
Conference on Product-Focused Software Process
Improvement (PROFES2006), Lecture Notes in Computer
Science LNCS 4034, Springer Verlag, Berlin, Germany,
2006, pp. 335–340.

[15] Greer, D. and Ruhe, G. Software release planning: an
evolutionary and iterative approach, Information and
Software Technology 46 (2004) 243–253

[16] Lehtola, L. and Kauppinen, M. Suitability of
Requirements PrioritizationMethods for Market-driven
Software Product Development, Softw. Process Improvement
Practices, 2006

[17] Karlsson L, Berander P, Regnell B, Wohlin C.
Requirements prioritisation: An experiment on exhaustive
pair-wise comparisons versus planning game partitioning. In
Proceedings of Empirical Assessment in Software
Engineering (EASE2004), Edinburgh, Scotland, 2004

[18] Berander, P. and Andrews, A.: "Requirements
Prioritization," in Engineering and Managing Software
Requirements, A. Aurumand C. Wohlin, Eds. Berlin:
Springer, 2005, pp. 69-94..

[19] Karlsson, J., Wohlin, C and Regnell, B.,”An Evaluation
of Methods for Prioritising Software Requirements”,
Information and Software Technology 39 (1998), pp. 939-947

[20] Natt och Dag, J. Regnell, B., Carlshamre, P.; Andersson,
M. and Karlsson, J., A feasibility study of Automated
Natural Language Requirements Analysis in Market-driven
Development, Requirements Engineering, 2002, p 20-33

[21] Lehtola, L. and Kauppinen, M."Suitability of
Requirements Prioritization Methods for Market-driven
Software Product Development," Software Process
Improvement and Practice, vol. 11, pp. 7-19, 2006

504

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80082

