
TRACING THE LATENCY REPORT OF DATA

IN GCP USING KUBERNETES ENGINE FOR

IMPROVING THE PERFORMANCE

Abstract—This project looks into Google Cloud

Platform (GCP) performance problems with latency in

data processing and suggests a fix based on Kubernetes

Engine (GKE). GCP is a well- known cloud computing

platform that offers numerous services for data

processing, analysis, and storage. Unfortunately, GCP’s

data processing pipelines frequently have latency

problems, which might impair the functionality and

dependability of applications. The duration between

when a request is made and when a response is received

is known as latency. Latency can occur in data

processing pipelines for a variety of reasons, including

network delays, processing bottlenecks, and resource

competition. As latency problems in GCP can result

from numerous components and interactions inside a

system, they can be extremely difficult to analyse and

fix. Through the use of Kubernetes Engine, this project

investigates Google Cloud Platform (GCP) latency

problems in data processing and offers a fix (GKE). A

wide range of services for data processing, analysis, and

storage are offered by the well-known cloud computing

platform GCP. Yet GCP’s data processing pipelines

frequently have latency problems, which can impair an

application’s performance and dependability. The time

lag between making a request and getting a response is

known as latency. Latency can occur in data processing

pipelines for a number of reasons, including resource

competition, processing bottlenecks, and network

delays. Given that they can result from numerous

components and interactions within a system, latency

issues in GCP can be extremely difficult to analyse and

fix. With the help of Kubernetes Engine, this project

presents a fix to the performance problem caused by

latency in data processing on Google Cloud Platform

(GCP) (GKE). GCP is a well-known cloud computing

platform that offers a variety of services for data

processing, processing, and analysis. The performance

and dependability of applications might be adversely

affected by latency issues that frequently plague

GCP&’s data processing pipelines. At the moment a

request is made and a response is received, there is a

time delay called latency. Latency in data processing

pipelines can be caused by a variety of things, including

resource competition, processing bottlenecks, and

network delays. As they might result from numerous

components and interactions inside a system, latency

issues in GCP can be particularly difficult to analyse

and fix

Services—GKE,Load balanging,Terraform,Pub/sub.

Mr. V. Karthi .M.E

Assistant Professor

Department of computer

science and Engineering

KSR institute for engineering and technology

Tiruchengode

karthimecse123@gmail.com

Krishnamoorthy M

Department of computer

science and Engineering

KSR institute for engineering and technology

Tiruchengode

msskmskrishnamoorthy@gmail.com

Sanjay M

Department of computer

science and Engineering

KSR institute for engineering and technology

Tiruchengode

mss681956@gmail.com

Nishanth R

Department of computer

science and Engineering

KSR institute for engineering and technology

Tiruchengode

rnishanthrnishanth@gmail.com

Yogesh M

Department of computer

science and Engineering

KSR institute for engineering and technology

Tiruchengode

m.yogesh000007@gmail.com

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

1.INTRODUCTION

Modern applications must process data, and cloud

computing platforms like Google Cloud Platform (GCP)

offer a variety of services for data processing, analysis, and

storage. Unfortunately, GCP's data processing pipelines

frequently have latency problems, which might impair the

functionality and dependability of applications. In data

processing pipelines, latency, which is the period of time

between the start of a request and the receipt of a response,

can be caused by a number of things, including network

delays, processing bottlenecks, and resource contention.

Due to the fact that data processing pipelines can comprise

numerous components and interactions within a complex

system, identifying the source of delay in GCP can be

particularly difficult. As a result, this research suggests

using the container orchestration platform Kubernetes

Engine (GKE) to deploy and manage the parts of data

processing pipelines in GCP. GKE has a number of tools,

such as monitoring, logging, and tracing capabilities that

can assist in identifying latency problems. It is feasible to

track the origin of latency problems and isolate them at

different stages of the processing pipeline by utilizing GKE

to manage data processing pipelines. This research looks

into GCP's data processing latency problems and suggests

adopting GKE as a speed boost. A sample data processing

pipeline on Google Cloud Platform (GCP), which consists

of several parts, including data storage, data processing,

and data analysis, is used to assess the suggested solution.

The pipeline's latency problems are tracked using GKE's

monitoring and tracing tools, and the findings demonstrate

a notable boost in performance after applying the suggested

fix.The report also discusses different methods for

optimising data processing pipelines, such as resource

scaling, caching, and load balancing. The proposed

solution provides a scalable and efficient method of

managing data processing pipelines in GCP, which can

improve application performance and reliability. However,

dealing with large volumes of data, complex processing

logic, and resource constraints remain significant

challenges in optimising data processing pipelines. Future

research can investigate these issues and develop novel

techniques to improve the performance of GCP data

processing pipelines.

1.2 FEATURES

Containerization: Kubernetes Engine packages

application code and its dependencies in containers,

allowing for faster and more reliable deployment and

scaling of data processing pipeline

components.Containerization is the process of packaging

an application and its dependencies into a single container

that can then be deployed and run on any container-

compatible platform or operating system. Containerization

has grown in popularity in cloud computing environments

because it provides a consistent and portable method of

deploying applications across multiple cloud

environments. [1] Container orchestration: To manage

containers at scale, many cloud providers, such as

Kubernetes or Amazon ECS, provide container

orchestration services. These services automate container

deployment, scaling, and management, making

containerized applications easier to run in the cloud.

[2]Container registries: Typically, containers are stored

in container registries such as Docker Hub or Amazon

ECR. Developers can use these registries to share and

distribute container images across multiple environments.

[3]Serverless containers: Some cloud providers, such as

AWS Fargate and Azure Container Instances, provide

serverless container services. Developers can use these

services to run containers without having to manage the

underlying infrastructure. Overall, cloud containerization

gives developers a flexible and scalable way to deploy

applications across multiple cloud environments.[4] Auto-

scaling: Based on the workload, Kubernetes Engine can

automatically scale the number of pods running a

component, ensuring that resources are allocated optimally

and reducing the risk of latency issues.The ability of a

cloud service provider to dynamically allocate or reallocate

computing resources based on demand is referred to as the

cloud. This means that when a cloud-based application or

service experiences an increase in traffic or workload,

additional resources are automatically added to ensure

optimal performance. When traffic drops, excess resources

are automatically removed to reduce costs. Setting up rules

or thresholds that trigger resource allocation or deallocation

based on certain metrics, such as CPU utilization, network

traffic, or application performance, is typical. Auto-scaling

mechanisms provided by cloud service providers include

horizontal scaling, which involves adding more instances

of an application or service, and vertical scaling, which

involves increasing the computing power of existing

instances. It is significant because it enables businesses to

save money by only paying for the resources they require

while also ensuring optimal performance and availability

of their applications and services. It can also enhance the

user experience by reducing downtime and latency, as well

as improving overall system reliability and scalability.

Resource management: Kubernetes Engine provides a

centralised platform for managing resources such as CPU,

memory, and storage, making data processing pipeline

management easier.

Monitoring: Kubernetes Engine supports real-time

monitoring and logging of application performance,

allowing administrators to identify and isolate potential

latency issues.

Tracing: Kubernetes Engine includes tracing tools that

allow operators to follow the flow of data through the

pipeline, identifying potential bottlenecks and optimising

the processing flow.Tracing in Kubernetes is the process of

collecting, analysing, and visualising data associated with

Kubernetes cluster requests. Kubernetes includes a number

of tracing tools and mechanisms.Tracing is important in

Kubernetes because it enables developers and operators to

identify performance bottlenecks, diagnose errors, and

optimise the overall performance of their applications and

services. It can also aid in comprehending the behaviour of

the Kubernetes cluster and its components, resulting in

better resource allocation and utilisation. Fault tolerance:

Kubernetes Engine is built to handle failures in a data

processing pipeline component by automatically restarting

failed pods or deploying replacement pods, ensuring that

the pipeline remains operational.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

 Security: To ensure the security and privacy of data

processing pipelines, Kubernetes Engine includes a number

of security features such as network isolation, secrets

management, and encryption.

 Other GCP services integration: Kubernetes Engine

integrates with other Google Cloud Platform services, such

as Google Cloud Storage, Google BigQuery, and Google

Pub/Sub, allowing data processing pipelines to take

advantage of the entire GCP ecosystem.Google Kubernetes

Engine (GKE) integrates seamlessly with Google Cloud

Platform's other services (GCP). GKE can be configured to

use Google Cloud Storage as a persistent storage solution

for Kubernetes pods. This can be useful for storing

application data that needs to survive a pod's lifecycle.

Google Cloud Pub/Sub: GKE can be configured to use

Google Cloud Pub/Sub as a Kubernetes messaging service.

This is useful for constructing event-driven architectures

and integrating microservices.GKE can be set up to send

logs and metrics to Google Cloud Logging and Monitoring,

which provides a central location for monitoring and

troubleshooting Kubernetes applications. GKE can be

integrated with Google Cloud Load Balancing, which

offers a global, scalable, and highly available load

balancing solution for Kubernetes applications. GKE is

compatible with Google Cloud Load Balancing, which

provides a global, scalable, and highly available load

balancing solution for Kubernetes applications.These are

only a few of the numerous GCP services that can be

integrated with GKE. The integration of GKE with GCP

services enables the development of highly scalable,

reliable, and efficient cloud applications. GKE integrates

with Stackdriver, a platform for fully-managed monitoring,

logging, and diagnostics. This allows GKE clusters to

monitor the cluster's and its applications' performance and

health, as well as diagnose and troubleshoot errors.

2. RESEARCH METHODS

To address these issues, this report suggests using

Kubernetes Engine (GKE) to manage and deploy data

processing pipeline components in GCP. GKE is a

container orchestration platform that automates

containerized application deployment, scaling, and

management. GKE can be used to simplify data processing

pipeline management and ensure that resources are

allocated optimally. GKE also offers a variety of

monitoring and tracing tools to assist in determining the

source of latency issues in data processing pipelines. The

monitoring capabilities of GKE, for example, can provide

real-time metrics on the performance of individual pipeline

components, allowing operators to identify and isolate

potential latency issues. GKE's tracing capabilities also

allow operators to follow the flow of data through the

pipeline. As a result, they can identify potential bottlenecks

and optimise the processing flow. The data processing

pipeline components in the proposed system are deployed

as containerized applications on GKE, with each

component running as a separate pod. GKE's auto-scaling

capabilities can be used to automatically scale the number

of pods based on the workload, ensuring optimal resource

allocation and lowering the risk of latency issues. Overall,

the proposed system offers a more efficient and scalable

method of managing data processing pipelines in GCP, as

well as tools for identifying and isolating latency issues.

GKE allows operators to simplify the management of data

processing pipelines while also improving application

performance and reliability.

3. OVERVIEW OF THE EXISTING APPROACHES

 This demo does not cover Stackdriver monitoring or

logging, but it is worth noting that the application you

deployed will publish logs to Stackdriver Logging and

metrics to Stackdriver Monitoring.

Messages from the demo app are published to a Pub/Sub

topic, as described in the Architecture section of this

document. The gcloud CLI can be used to consume these

messages from the topic. Tracing is unaffected by pulling

messages from the topic. This section simply provides a

message consumer for verification purposes.

You should see a chart with trace events plotted on a

timeline and latency as the value.4.1.2. The current system

for tracing data latency reports in GCP involves the use of

various monitoring and logging tools provided by GCP.

These tools can aid in the monitoring of data processing

pipeline performance and the identification of potential

latency issues. However, tracing the source of latency in

complex systems can be difficult with these tools because

they may not provide an accurate picture of the system.

Furthermore, traditional methods of managing data

processing pipelines in GCP involve manually configuring

and deploying each pipeline component. This method is

time-consuming and error-prone, especially in large-scale

systems. Furthermore, manually managing resources can

result in inefficient resource allocation and utilization,

potentially leading to latency issues.

1. Enable Cloud Shell Cloud Shell is a web-based

command-line interface (CLI) provided by

Google Cloud Platform (GCP) that enables users

to manage GCP resources directly from their web

browser without the installation of any additional

software. It gives you a pre-configured Linux

environment with access to various pre-installed

tools and utilities like gcloud, kubectl, and git.

This simplifies the management of GCP resources

and the deployment of applications using familiar

command-line tools.

2. Initialization: You are now ready to deploy the

infrastructure after completing the initialization

process. From the project's root directory, execute

the following command: -cd terraform

3. Update the provider.tf file: Delete the Terraform

provider version from the provider.tf script

file.Nano provider.tf to edit the provider.tf script

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

file.Remove the following lines if the file contains

the static version string for the Google

provider:..... provider "google" var.project version

= "> 2.10.0" Then, using CTRL + X > Y > Enter,

save the file. Your provider.tf script file should

now look like this:... provider "google" project =

var.project From here, launch Terraform.

Type:terraforminit. Run the

script:../scripts/generate-tfvars.sh. If the file

already exists, an error message will be displayed.

The following command displays the current

values: gcloud configuration list

4. Deployment: Now that Terraform has been

initialised, you can see the work that Terraform

will do with the following command: Terraform

design. After verification, instruct Terraform to

install the required infrastructure: apply terraform.

5. Deploy Demo Application: Return to the

Console after seeing the Apply complete!

message in Cloud Shell. To view your cluster,

navigate to Kubernetes Engine > Clusters in the

Navigation menu. To see the Topic and

Subscription, click on the Navigation menu, then

scroll down to the Analytics section and click on

Pub/Sub. Now, use Kubernetes' kubectl command

to deploy the demo application: kubectl apply -f

tracing-demo-deployment.yaml. Once deployed,

the app can be viewed in Kubernetes Engine >

Workloads. In the Services & Ingress section of

the console, you can also see the load balancer that

was created for the application.

6. VALIDATION: To view the exposed services,

stay in the Kubernetes window and click Services

& Ingress. To open the demo app web page in a

new browser tab, click the endpoint listed next to

the tracing-demo load balancer. Keep in mind that

your IP address will most likely differ from the

example above. The displayed page is

straightforward. Add the string:?string=Custom

Message to the url and check to see if the message

is displayed. To generate some custom data, you

replace the "Custom Message" with your own

messages.

7. Tracing: Select Navigation menu > Trace > Trace

list from the Console. To see the most recent data,

toggle the Auto Reload button.

8. Pulling Pub/Sub messages: gcloud pubsub

subscriptions pull --auto-ack --limit 10 tracing-

demo-cli

DATA: Data Latency

MESSAGE_ID: 4117341758575424

ORDERING_KEY:

ATTRIBUTES:

DELIVERY_ATTEMPT:

DATA: Google Cloud Platform -GCP

MESSAGE_ID: 4117243358956897

ORDERING_KEY:

ATTRIBUTES: DELIVERY_ATTEMPT:

9. Monitoring and logging (Optional)

Select Navigation menu > Monitoring > Metrics

Explorer from the Console. Select VM Instance >

Instance > CPU Usage in the Select a metric field,

then click Apply.

To view logs, go to the Navigation menu >

Logging.Set the following in the Log fields

section:RESOURCETYPE:,Kubernetes

Container,NAMESPACE,NAME:

default,CLUSTER NAME: tracing-demo-space

10. Troubleshooting: The kubectl command can be

used to diagnose the errors. For example, consider

the following deployment: get deployment

tracing-demo kubectl

11. Destroy

Terraform destroy

12. Testing:

Tracing data latency reports in GCP using

Kubernetes Engine to improve performance

necessitates several types of testing. Each type of

testing serves a distinct purpose and aids in

ensuring that the system is operating at peak

efficiency.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

4. CONCLUSIONS

Tracing the latency report of data in Google Cloud Platform

(GCP) using Kubernetes Engine is an important step

towards improving an application's overall performance.

GCP is a popular cloud platform that provides a wide range

of services to help businesses run their applications.

[1].However, with such a large number of users and

applications running on GCP, it is critical to ensure that the

applications are running at peak performance. Businesses

can identify and address bottlenecks in the system by

tracing the latency report of data in GCP using Kubernetes

Engine, improving response time and enhancing the user

experience.

[2]. This is especially important for industries like e-

commerce and finance that rely on real-time data

processing and analytics. Kubernetes Engine's built-in tools

provide a range of options for monitoring and tracing the

performance of an application.

[3] Advanced logging and tracing capabilities enable users

to quickly diagnose issues and take corrective action,

reducing downtime and improving overall application

performance.

[4].One of the primary advantages of using Kubernetes

Engine to track data latency in GCP is the ability to deploy

applications quickly and scale them automatically.

Kubernetes Engine provides a container-optimized

infrastructure, making it easier for businesses to manage

their applications and ensure that they are running

efficiently.

[5] Kubernetes Engine also includes a centralised

dashboard for monitoring and tracing an application's

performance, allowing users to visualize key performance

metrics and quickly identify any issues that may be

affecting the application. The performance of the

application. Overall, tracing the latency report of data in

GCP using Kubernetes Engine is an important step towards

improving an application's performance.

[6] Businesses can optimise their systems, provide better

user experiences, and gain a competitive advantage in their

respective markets by leveraging the platform's advanced

monitoring and tracing capabilities. The use of Kubernetes

Engine for monitoring and tracing an application's

performance also allows businesses to reduce the costs

associated with managing their infrastructure. Businesses

can use Kubernetes Engine to optimise their resources and

reduce the overhead of managing containers, allowing them

to focus on developing their applications and providing

value to their customers.

[7] To summarize, Kubernetes Engine is a powerful

platform for managing containers and deploying

applications in Google Cloud Platform. By following the

Businesses can improve the performance of their

applications, reduce costs associated with managing their

infrastructure, and improve the security of their systems by

using Kubernetes Engine.

[8] Kubernetes Engine's advanced monitoring and tracing

capabilities enable businesses to optimise their systems and

provide better user experiences, giving them a competitive

advantage in their respective markets.

5. FUTURE SCOPE

 The introduction of 5G and 6G networks will

completely transform commercial network infrastructure

and design. Massive amounts of computational power will

be released by the newly launched network.

[1] Low data latency, increased capacity, and faster

network speeds will be the driving forces, particularly in

the cloud computing sector, resulting in faster

implementation of next-generation networks for enterprise

cloud adoption. The cloud is a technology that allows users

to access computing resources, data storage, development

tools, and applications via the internet. Access to cloud

computing services ensures the speed, scalability, and

flexibility required for business IT innovation and

development. Cloud computing, on the other hand, enables

procedures and software to be run over the internet.[2]

Cloud and cloud computing coexist in the sense that we will

be unable to access data stored in the cloud without online

processing, which is essentially cloud computing but also

requires a storage site. Over time, the cloud has alleviated

our problem of slow network speeds by allowing for the

easy and rapid transmission of massive amounts of data

across devices.[3]Cloud computing enabled this while also

providing security and backup features. Our bandwidth

requirements to fully utilize the potential of cloud

infrastructure, on the other hand, are increasing by the day.

The number of Internet of Things (IoT) devices is expected

to reach 61.0 billion by 2050, according to projections. This

highlights the importance of lower latency and faster

bandwidth for managing the various cloud systems.[4]As a

result, upgrading to next-generation networks is critical in

order to accommodate the growing number of cloud

computing users.

6. REFERENCE

[1]."Jetscope: reliable and interactive analytics at cloud

scale," Eric Boutin, Paul Brett, Xiaoyu Chen, Jaliya

Ekanayake, Tao Guan, Anna Korsun, and colleagues.

[2]."Apollo: scalable and coordinated scheduling for

cloud-scale computing," Eric Boutin, Jaliya Ekanayake,

Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, and

colleagues.

[3]."Fair and balanced? : Bias in bug-fix datasets," C.

Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V.

Filkov, and P. T. Devanbu.

[4]."DevOps; Puppet Docker and Kubernetes - Learning

Path," by Thomas Uphill, Khare Arundel, Lee Saito, and

Carol Hsu.

[5]."DevOps Troubleshooting," Kyle Rankin.

[6]."Kubernetes from the ground up: deploy and scale

performant and reliable containerized applications with

Kubernetes," Basit Mustafa, Tao W, James Lee, and

Stefan Thorpe.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 11, Issue 03

ETEST - 2023

www.ijert.org

