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YOLO-CFNN and YOLO-VCFNN classification methods 

demonstrated superior mean average precision and F1 

measure (F1) of 99%, surpassing other methods. Field tests 

on Taiwanese roads showcased not only high F1 scores for 

vehicle classification but also remarkable accuracy in 

vehicle counting using the proposed YOLO-CFNN and 

YOLO-VCFNN methods. Moreover, the system maintains a 

detection speed of over 30 frames per second on the AGX 

embedded platform, underscoring its suitability for real-

time vehicle classification and counting in practical settings. 
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The study of road traffic monitoring holds significant 

importance. By analyzing vehicle types and traffic patterns, 

current traffic conditions can be comprehended, enabling the 

provision of actionable insights to traffic management 

authorities. This data aids in making decisions that enhance 

people's quality of life. For instance, during holidays, insights 

into road traffic volume can suggest alternate routes to drivers, 

alleviating congestion in certain areas. Moreover, if specific 

roads are frequented by large trucks, roadside warnings can be 

installed to alert drivers, thereby reducing traffic accidents. 

Furthermore, identifying and tracking vehicles based on type and 

color can assist in law enforcement efforts. These applications all 

hinge on data collected by road monitoring systems for analysis. 

Consequently, researchers have explored various methods for 

vehicle detection and classification to gather information on 

passing vehicles. 

Abstract: 

As urbanization accelerates, the surge in intercity travel has 

led to various traffic-related issues like congestion and an 

overwhelming variety of vehicles. Addressing these 

challenges necessitates robust road data collection. Thus, 

this paper introduces an advanced traffic-monitoring system 

integrating You Only Look Once (YOLO) and a 

Convolutional Fuzzy Neural Network (CFNN) for recording 

traffic volume and vehicle types on roads. Initially, YOLO 

detects vehicles and combines with a vehicle-counting 

technique to gauge traffic flow. Subsequently, two efficient 

models (CFNN and Vector-CFNN) along with a network 

mapping fusion approach are proposed for vehicle 

classification. In experimental trials, our method achieved a 

commendable 90.45% accuracy on the Beijing Institute of 

Technology dataset. On the GRAM-RTM dataset, the 

INTRODUCTION: 

In Mumbai, approximately 700 new vehicles hit the roads each 

day, as reported in [1], while the total road length remains steady 

at around 2000 kilometers. This has led to significant congestion 

due to ongoing development projects. Traffic violations stand out 

as a primary cause of road accidents, resulting in numerous 

casualties and injuries annually. Preventing such tragedies 

necessitates strict adherence to traffic rules. The adoption of 

advanced technology in traffic monitoring, such as widespread 

camera installations across cities, has enabled the capture of 

violations effectively. Leveraging this infrastructure presents an 

opportunity to enhance traffic conditions further. Machine 

Learning and Artificial Intelligence (AI) emerge as vital tools for 

processing the extensive data gathered through CCTV cameras. 

AI, encompassing subsets like Machine Learning and Deep 

Learning, offers the capability for computers to learn 

autonomously without explicit programming. With the aim of 

assisting humans and executing tasks with heightened precision, 

computers are directed to perform specific functions. 

Traditional methods for vehicle detection can be broadly 

categorized into two types: static-based and dynamic-based 

approaches. 

Static-based methods rely on analyzing stationary characteristics 

of vehicles within images. For instance, Mohamed et al. 

employed Haar-like features to capture vehicle shapes and then 

fed these features into an artificial neural network for 

classification. Similarly, Wen et al. utilized Haar-like features to 

extract edge and structural features of vehicles, employing 

AdaBoost to filter essential features which were then classified 

using a Support Vector Machine (SVM). Sun et al. and David and 

Athira utilized Garbor filters to characterize vehicles and 

subsequently employed SVMs to determine vehicle presence in 

images. Wei et al. introduced a two-step approach wherein Haar-

like features and AdaBoost were first used to identify regions of 

interest containing vehicles, followed by the application of 

Histogram of Oriented Gradients (HOG) and SVM for region 

verification. Yan et al. developed a system utilizing vehicle 

shadows to delineate vehicle boundaries, leveraging HOG for 

feature extraction, and employing AdaBoost and SVM classifiers 

for verification. Notably, in this method, when vehicles obstruct 

each other, they are treated as one vehicle due to connected 

shadows, which may reduce detection accuracy. 

Regarding dynamic approaches, Seenouvong et al. proposed a 

system for vehicle detection and counting based on dynamic 

features. They utilized background subtraction to generate a 
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design by experts based on their experience, leading to a complex 

process. Moreover, the features extracted are typically shallow 

and limited in their ability to effectively capture changes in 

vehicle characteristics. 

Dynamic feature methods increase the complexity of subsequent 

image processing operations, particularly in scenarios with 

extensive background changes, and may yield suboptimal 

detection results. As deep learning techniques have advanced, 

conventional methods like these are gradually being replaced by 

deep learning approaches. 

difference map, allowing segmentation of the foreground image. 

Various morphological operations were then employed to 

identify moving objects, extract their outlines and bounding 

boxes, and ultimately count vehicles passing through specified 

areas. 

Some researchers have utilized Gaussian mixture models 

(GMMs) to model background scenes or adaptive backgrounds, 

aiming to address issues with background subtraction arising 

from gradual changes in brightness. However, both static and 

dynamic methods have limitations in addressing this problem. 

Traditional feature extraction methods often require manual 

Model: 

YOLOv3, or "You Only Look Once," stands out in the field of 

Object Detection, surpassing traditional algorithms in 

performance. Object detection involves two primary tasks: 

locating objects in an image and then classifying them. While 

previous methods like R-CNN showed improvements over 

traditional techniques, they faced limitations due to their 

complex pipelines, necessitating separate training for each 

component. 

In contrast, YOLOv3 revolutionizes this approach by 

integrating both tasks into a single neural network. This unified 

architecture not only boosts accuracy but also streamlines the 

process. YOLOv3 offers notable advantages, including swift 

performance and the ability to detect multiple objects within a 

single image, setting it apart from its predecessors. 

In an FCNN (Fully Convolutional Neural Network), the input image is divided into a grid of size S x S. Each cell 

within this grid is tasked with detecting any object that lies within its boundaries. When an object is detected, the 

cell predicts a bounding box and provides the confidence level indicating the likelihood of the object's presence. 

Each predicted bounding box includes five components: 

• The (x, y) coordinates of the center of the box relative to the

grid cell.

• The width (w) and height (h) of the predicted object.

• The confidence score, which is expressed as the Intersection

over Union (IoU) between the predicted bounding box and the

ground truth.

Additionally, each grid cell predicts the conditional class 

probability for the detected object. 

Earlier versions of YOLO utilized the Darknet-19 architecture, 

which initially comprised 19 layers. Later, an additional 11 layers 

were incorporated for object detection . However, these versions 

faced challenges with accurately detecting small objects. Although 

concatenating feature maps was attempted to address this issue, it 

did not yield significant improvements. 

The YOLOv3 architecture, on the other hand, consists of 106 

convolutional layers and is a feature-learning based network. This 

architecture is a variant of the Darknet framework, which includes 

53 layers pre-trained on the ImageNet dataset . An additional 53 

layers are added to achieve state-of-the-art image detection. 

YOLOv3 can process images of any size without using pooling 

layers, thereby preserving fine details and minute features. Instead, 

convolutional layers with a stride of 2 are employed to downsample 

the feature map. The ResNet architecture, particularly the use of 

Residual Blocks, is crucial for enhancing both accuracy and speed. 
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Bounding Box Prediction 

The bounding box coordinates (bx, by) and dimensions (bw, bh) 

represent the (x, y) coordinates, height, and width of the 

bounding box. The predicted values are denoted as tx, ty, tw, and 

th, while the top-left coordinates of the grid cell are represented 

by cx and cy. The anchor dimensions for the box are given by pw 

and ph. 

The center coordinates, being offset values relative to the top-left 

of the grid cell, are passed through a sigmoid function. For 

example, if the top-left of the cell is at (8,8) and the center 

coordinate is (0.3, 0.8), then the center lies at (8.3, 8.8). Since the 

sigmoid function is applied, the center coordinates always range 

between 0 and 1. 

The height and width of the bounding box are calculated by 

applying a log-space transform to the output and then multiplying 

by the anchor dimensions. This output is then normalized to fall 

within the range of 0 to 1. For instance, if a feature map of size 

13x13 is used and the values for bx and by are 0.4 and 0.6, the 

height and width of the bounding box are (13x0.4, 13x0.6). 

The object score indicates the probability that an object is inside 

the bounding box. The value is 1 if the object's center lies within 

the grid cell and 0 if it lies at the grid corner. This score is also 

processed through a sigmoid function. 

Class confidence represents the probability that the object 

belongs to a particular class. Initially, the softmax function was 

used for this purpose. However, because softmax assumes that 

objects belong to mutually exclusive classes, YOLOv3 now uses 

the sigmoid function for class confidence. 

Flow chart: 

Loss Function: 

The loss function in versions prior to YOLOv3 is depicted in Fig. 4 [16]. The first term addresses the error in the offset of  the 

bounding box location, specifically the (x, y) coordinates. The second term calculates the error related to the width and height of 

the bounding box. The third and fourth terms handle the object confidence error, while the fifth term assesses the class probability 

error [17]. All these errors are computed using the Sum of Squared Errors (SSE). However, in YOLOv3, the Cross-Entropy error 

replaces SSE, meaning that object confidence and class predictions are now made using logistic regression [18]. 

Literature Review: 

In recent years, deep learning has gained widespread use across 

various fields, yielding impressive predictive results. Unlike 

traditional methods that rely on manually defined features, 

convolutional neural networks (CNNs) significantly enhance 

image recognition accuracy. Initially, Lecun et al. [14] 

introduced the LeNet model to address the challenge of 

recognizing handwritten digits in the banking sector. Krizhevsky 

et al. [15] advanced traditional CNNs with AlexNet by deepening 

the model architecture and incorporating the ReLU activation 

function and dropout layers to boost learning efficacy and 

prevent overfitting. Szegedy et al. [16] developed GoogLeNet, 

which employs multiple filters of varying sizes to extract more 

comprehensive feature information. Simonyan and Zisserman 

[17] proposed VGG-16 and VGG-19, models that replace large

convolution kernels with successive small kernels to improve
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accuracy through increased model depth. He et al. [18] 

introduced the ResNet model, utilizing residual blocks to combat 

issues like gradient vanishing and convergence difficulties due to 

excessive network depth. Howard et al. [19] presented 

MobileNet, which uses depthwise separable convolutions to 

reduce redundant parameters while extracting fewer but more 

relevant features. 

These advancements have significantly enhanced CNNs' feature 

description capabilities, extending their application to more 

complex tasks such as object detection. Several researchers [20]–

[24] have leveraged region-based CNN (R-CNN) models to

tackle vehicle detection. R-CNN uses a region proposal network

(RPN) [25] to locate objects, which are then classified using a

traditional CNN. RetinaNet [26] is a recent R-CNN model that

employs a two-stage mechanism and a multilayer neural network

for classification [27], [28]. However, this approach increases the

number of parameters and reduces execution speed, making it

unsuitable for real-time detection. To address this, one-stage

methods like the YOLO (You Only Look Once) framework [29]–

[31] and the single-shot multibox detector (SSD) [32] have been

proposed. These methods offer real-time object detection but

with lower classification accuracy compared to R-CNN methods

[33], [34].

The existing object detection methods face several challenges: 1)

Two-stage methods offer high classification accuracy but suffer

from slow detection speeds due to a large number of parameters.

2) One-stage methods provide fast real-time detection but have

lower accuracy than two-stage methods. 3) Expanding the

number of object categories necessitates retraining the entire

network, which is time-consuming and reduces scalability.

Recently, fuzzy neural networks (FNNs) [35]–[39] have

combined the human-like fuzzy inference mechanism with the

powerful learning capabilities of neural networks for tasks such

as classification, control, and forecasting. Asim et al. [35] applied

an adaptive network-based fuzzy inference system to

classification problems, achieving higher accuracy than 

traditional neural networks. Lin et al. [36] utilized an interval 

type-2 FNN to predict tool flank wear, yielding excellent results. 

Other researchers have employed locally recurrent functional 

link FNNs [37] and Takagi-Sugeno-Kang-type FNNs [38], [39] 

for system identification and prediction, also with promising 

outcomes. In this study, an FNN was integrated into a deep 

learning network to reduce parameters and enhance classification 

accuracy. Conventional CNNs typically use pooling, global 

pooling [40], and channel pooling [41] for feature fusion. Global 

pooling methods, such as global average pooling (GAP) [42] and 

global max pooling (GMP) [43], sum spatial information to 

achieve robust feature fusion and prevent overfitting. Channel 

pooling methods, including channel average pooling (CAP) [44] 

and channel max pooling (CMP) [45], compute average or 

maximum values at corresponding positions in each channel of 

feature maps. However, these methods only compress features 

without learnable weights, leading to suboptimal classification 

results. This study proposes a new feature fusion method called 

network mapping to improve feature fusion effectiveness. 

To develop an intelligent traffic-monitoring system with high 

execution speed, classification accuracy, and category 

extensibility, this study adopted a two-stage object detection 

approach. The proposed system, based on YOLO and a 

convolutional FNN (CFNN), collects real-time data on traffic 

volume and vehicle types. A novel modified YOLOv4-tiny 

(mYOLOv4-tiny) model is used for vehicle detection, combined 

with a vehicle counting method to calculate traffic flow. 

Additionally, two effective models (CFNN and Vector-CFNN) 

and a network mapping fusion method were proposed to enhance 

computational efficiency, classification accuracy, and category 

extensibility. The proposed model architecture has fewer 

parameters than other models, enabling real-time, high-accuracy 

vehicle classification with limited hardware resources and 

flexible category extension. 

The contributions of this study are summarized as follows: 

• Development of an intelligent traffic-monitoring system to

record real-time traffic volume and vehicle types.

• Proposal of the mYOLOv4-tiny model for real-time object

detection and improved detection efficiency.

• Implementation of two effective models (CFNN and Vector-

CFNN) with a new network mapping fusion method to

increase classification accuracy and significantly reduce

model parameters.

• Enabling category extensions (e.g., vehicle type) by training

only the classification model (CFNN), without retraining the

object detection model (YOLO), thus saving substantial

training time and improving category extension flexibility.

• Deployment of the proposed system on the NVIDIA AGX

Xavier embedded platform for real-time vehicle tracking,

counting, and classification on provincial highway 1 (T362)

in Kaohsiung, Taiwan.
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The YOLOv3 model, trained on the COCO dataset, is utilized to 

detect 80 classes of objects, including motorcycles, bikes, cars, 

buses, trucks, and autorickshaws. The model underwent 

additional training to include autorickshaw detection using a 

dataset obtained from [19]. This training spanned 200 epochs and 

took approximately 48 hours on a machine equipped with an i5 

processor and 8 GB of RAM, achieving a training loss of 0.0836. 

Our focus is on detecting the following classes: ‘bicycle’, ‘car’, 

‘motorcycle’, ‘bus’, ‘truck’, and ‘auto’. 

We establish a virtual line aligned with the white line ahead of 

the zebra crossing, where vehicles are required to stop. If the 

traffic signal is red and a vehicle crosses this white line, a 

violation is recorded. Additionally, if a vehicle jumps a red light, 

an image of the vehicle must be captured. 

RESULTS: 
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CONCLUSION: 

In this study, an intelligent traffic-monitoring system was 

proposed to calculate traffic flows and classify vehicle types. 

The major contributions of this study include: 

• The development of a novel intelligent traffic-monitoring system

combining a YOLOv4-tiny model with a counting method for

traffic volume statistics and vehicle type classification.

• The design of the proposed CFNN and Vector-CFNN models by

introducing the fusion method and FNN, which not only
effectively reduce the number of network parameters but also

enhance classification accuracy.

• The implementation of a network mapping fusion method that

outperforms the commonly used pooling method, effectively

integrating image features and improving classification accuracy.

• The proposed YOLO-CFNN and YOLO-VCFNN models

demonstrated superior performance compared to current state-of-

the-art object detection methods (Retinanet, SSD, YOLOv4, and

YOLOv4-tiny), achieving high mAP rates, accurate counting

accuracy, and real-time vehicle counting and classification

capability (over 30 FPS).

Experimental results showed that the proposed CFNN and

Vector-CFNN models performed better than common deep

learning models. On the BIT dataset, the network mapping fusion

method improved recognition accuracy by 3.59%–5.92%

compared to the pooling method. Compared to the PCN-Net

model, the CFNN and Vector-CFNN models increased accuracy

by 1.93% and reduced the number of parameters by 57.1%. On

the GRAM-RTM dataset, the mAP and F1 scores of the proposed

vehicle classification methods reached 99%, higher than those of

other methods, and the proposed method was 1.65 times faster

than traditional YOLOv4 based on FPS indicators. On the T362

vehicle type dataset, the network mapping fusion method's

accuracy was 2.3%–5.36% higher than general pooling methods,

and compared to the AlexNet model, the CFNN and Vector-

CFNN models increased accuracy by 1.19% and 1.83%,

respectively, while reducing parameters by 98.8%.

In three actual road traffic scenarios, the YOLO-CFNN and 

YOLO-VCFNN methods achieved high F1 scores for vehicle 

classification and high accuracy for vehicle counting. In 

summary, the CFNN and Vector-CFNN models proposed in this 

study not only provide excellent vehicle classification but also 

have fewer parameters compared to other models, making them 

suitable for information analysis in environments with limited 

hardware performance. 

Regarding the extensibility of the proposed models, many factors 

affecting the machining accuracy of machine tools in intelligent 

manufacturing, such as temperature and tool wear, have been 

identified. Therefore, developing accurate models for these 

factors is crucial. Future studies will apply the proposed CFNN 

and Vector-CFNN models and the network mapping fusion 

method for modeling in intelligent manufacturing. 
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