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Abstract 

 

Accurate state estimation of a launch vehicle 

is imperative at any launch base for range 

safety and trajectory monitoring for 

assessing the success of the mission. Linear 

Kalman filter followed by extended Kalman 

filter were the ubiquitous digital filters used 

for optimal estimation of state for linear / 

quasi-linear systems. Of late unscented 

Kalman filter is proposed for state estimation 

of any non-linear system. This methodology 

consists in propagating the mean and the 

variance through non-linear transformation 

using statistically chosen sigma points. This 

paper presents the application of the 

unscented Kalman filter for estimating the 

trajectory of a satellite launch vehicle from 

noisy radar measurements, the ease of 

convergence and the accuracy achieved. 

 

1.  Introduction 
 

 For over four decades linear or extended 

Kalman filter has been the de facto standard in the 

field of tracking and control applications [1,6]. The 

ease these filters offer  for their application to real 

time scenario, their simplicity and robustness are some 

of the most compelling factors for their ubiquitous 

applications. Of late a new filter namely Unscented 

Kalman filter  [USKF] has outperformed  linear 

Kalman filter and extended Kalman filter in terms of 

robustness, numerical stability and better accuracy 

[2,7] .  

 State estimation   consists of estimating the 

probability density  function  for the state of the 

process. Estimation of state involves predicting the 

state based on current state and then correcting the 

prediction using measurements. The most pertinent 

problem in these filter problems is representation and 

maintenance of uncertainty [3].  In the linear Kalman 

filter, the first two moments of the probability 

distribution namely, mean and variance  are 

maintained. If these two moments of probability 

distribution are available,  Kalman filter yields the best 

state estimate in the tracking and control applications 

[7] based on the surmise that the distribution is 

gaussian and application of a linear operator to 

gaussian distribution is also gaussian. 

 Extended Kalman Filter [EKF] was proposed 

for state estimation of non-linear systems.  It simply 

calls for linearization of  non-linear systems wherever 

applicable. Assuming that size of errors are small in 

each time step, the state dynamical model is expanded 

as a Taylor series about the estimate. The second and 

higher order terms are neglected and the state 

prediction propagates through non-linear equations 

whereas the state errors propagate through linear 

systems. So the deficiency in extended Kalman filter is 

its inability to accurately predict the system state, 

observations and associated covariance matrices when 

the system and/or observations are non-linear. 

Approximating non-linear transformations with 

linearized ones results in divergent state for realistic 

observations and process models[4]. So an alternate 

method without using the linearization techniques is 

proposed by Simon Julier and Jeffrey Uhlmann to 

calculate these statistics. 
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2. Unscented transform and sigma points 
 

 In estimation arena,  if X is an n dimensional 

random variable with mean 𝑋  and covariance 𝑃𝑥𝑥   and 

it is related to n dimensional random variable Y by a 

non-linear transformation  𝜳 as 

 Y =𝜳(X)              1) 

then finding its  mean 𝑌  and the covariance PYY is the 

centrality of the problem. In this process, one comes 

across two  non-linear transformations i.e predicting 

the state for the next time step and predicting  the 

observation.  Simon Julier and Jeffrey Uhlmann [5,7] 

intuitively surmised  that with fixed number of 

parameters , it should be easier to approximate a 

gaussian distribution than it is to approximate an  

arbitrary non-linear function or transformation.  
That is, one has to find a set of parameters which can 

capture the mean and variance information and  at the 

same time allow themselves to be propagated through 

non-linear transformations.  A discrete distribution of 

points can be generated with same first and second 

moments and can be approximately transformed. With  

this backdrop Simon Julier and Jeffrey Uhlmann  

proposed the method of unscented transform for state 

estimation of non-linear systems. Using this transform  

a gaussian variable of n dimensions is represented by 

2n+1 sigma points. These sigma points are selected 

based on the concepts of matrix square root and 

covariance  and they have the same first two moments 

of the gaussian distribution. Simon Julier and 

Uhlmann  made use of this concept  of unscented 

transform in their filter formulation for state 

estimation. 

 

2.1. Accuracy of Sigma point approach 
 

 Let X
 
 be an m dimensional random variable 

with mean  𝑋  and variance 𝑃𝑥𝑥  . It can be 

approximated by a set of  2m+1 number of sigma 

points  χi  . They are                                

χ0     =   𝑋                              W0 = K/ 𝑚 + 𝑘              2) 

χi,      =  𝑋   + (   𝑚 + 𝑘  𝑃𝑥𝑥  )i    Wi = 1/2 𝑚 + 𝑘  

χi+m  = 𝑋   - (   𝑚 + 𝑘  𝑃𝑥𝑥   )i     W i+m =  1/2 𝑚 + 𝑘  

where   𝑚 + 𝑘  𝑃𝑥𝑥  )i  is the i
th

 row or column of the 

square root of matrix   𝑚 + 𝑘  𝑃𝑥𝑥 , 𝑘 € R 
 
 and Wis  

are the weights associated with each sigma point.  

Each sigma point is propagated through the non-linear 

function to arrive at the transformed sigma points            

   ξi   = f(χi)              3) 

and the mean and covariance of the transformed sigma 

points  are computed as 

    𝑦   =    2𝑚
0  Wi ξi                           4) 

 Pyy=   2𝑚
0  Wi [ ξi-𝑦  ]  [ ξi-𝑦  ] 

T
            5) 

 The computed value of mean and covariance of 

transformed sigma points are accurate up to second 

order because the mean and covariance of  𝑋    is 

accurate up to second order. That is how the accuracy 

is maintained. Its performance is equal to the truncated 

second order gaussian filter without the derivation of 

either jacobians or hessians. Performance of the 

unscented Kalman filter  is equivalent to that of linear 

Kalman filter for linear systems but  fits elegantly for 

non-linear systems without the linearization steps. 

Also it achieves better accuracy compared to the 

extended Kalman filter even with systems of high non-

linearity. The ease of implementation and more 

accurate state estimation   make this filter preferred 

compared to linear Kalman filter and extended 

Kalman filter. 

 

3.  Implementation of unscented Kalman 

filter 
 

 Let us look at a non-linear system  represented by 

the following discrete time equations 

 𝒙𝒌 = f(xk-1, wk-1, u k-1)            (6) 

 𝒚𝒌 = h(xk, u k)  + ʋk             (7) 

Where  𝒙  € 𝑅𝑛𝑥  is the system state,   𝑤  € 𝑅𝑛𝑤  is the 

process noise,  ʋ € 𝑅𝑛ʋ is the observation noise. Here  

𝒖  is the input,  𝒚  are the noisy  observations. The 

non-linear functions f and h can be continuous or 

discrete. 𝑘   is the discrete time. 

 

3.1. The augmented state 
 

 Simon Julier introduced the concept of 

augmenting the state with noise sources[7]. This 

technique enables us to treat noise in a non-linear 

fashion thereby taking care of non-gaussian and non-

additive noises. Sigma points are computed using the 

augmented state. In this process the non-linear effects 

of noise are also captured with the same amount of 

accuracy as that of the original state.  

The state vector is augmented to L where L is the sum 

total of the dimension of the original state, process 

noise and observation noise. The covariance matrices 

are also similarly augmented to a L
2 

 matrix. Now the 

augmented state and covariance matrix  are  

represented as 

XK-1
a 
    =  

𝑋𝐾−1

𝑂𝑤

𝑂𝑣

    and    

P K-1
a  = E  {(XK-1

a
 -  𝑋 K-1

a ) (XK-1
a
 -  𝑋 K-1

a )T } 
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where P K-1
a 
  =    

𝑃𝑘−1 0 0
0 𝑄𝑘−1 0
0 0 𝑅𝑘−1

         

 Creation of 2L+1  number of sigma points  is 

carried out in a way to accurately capture the mean 

and the covariance of the augmented state. The sigma 

points are represented by the  χ
a 

 matrix  whose 

columns are populated as  

 χ
a
0,K-1   =   𝑋𝐾−1

𝑎  for i=0              (9) 

χ
a
i, K-1     =   𝑋𝐾−1

𝑎   + (  𝐿 + 𝜆 𝑃𝐾−1)i   for i= 1,2 ……L 

χ
a
i, K-1     =   𝑋𝐾−1

𝑎  -  (  𝐿 + 𝜆 𝑃𝐾−1)i-L   

                                                        for i=L+1 …..2L 

 Here subscript i stands for the  i
th

 column of 

the square root of the covariance matrix [8] . 

Parameter   (𝐿 + 𝜆)    stands for the spread of the 

sigma points and it should be defined in the interval [ 

0-1]. To avoid any non local effects , the authors 

defined it as a low value [9].  

The sigma point matrix  χ
a
i,K-1   can be viewed as   

composing state χ
x
i,K-1 sampled process noise χ

w
i,K-1 

and sampled measurement noise χ
ʋ
i,K-1. Each sigma 

point is also weighted. These weights are obtained 

from the comparison of the moments of the sigma 

points with  a Taylor series expansion of the model. 

The weights for the mean and the covariance estimates 

are 

W0 
m     

=  𝜆/(𝐿 + 𝜆) 
        for i = 0           10)   

W0 
c      

=  𝜆/(𝐿 + 𝜆) 
 + 1 - 𝛼2 +  𝛽      for i = 0    

Wi 
m     

= Wc 
m
  = 1/2(𝐿 + 𝜆) 

     for i = 1,2, ….. 2L 

 Here m and c denote the weights associated 

with the mean and the covariance of the state. 

𝛼   and 𝛽  are the scaling parameters. The choice of  

𝛼   and 𝛽  determines the accuracy of the higher order 

moments of distribution.  𝛼 is defined as very low in 

the interval 0 < 𝛼 < 1 signifying sigma-point spread. 𝛽 

is  used to incorporate prior knowledge of the 

distribution in the state prediction and update.  

 These Sigma points are  propagated to arrive 

at the predicted state through the state and 

measurement models and to carry out their weighted 

averages.    

χ
a
i, K/K-1  =  f(χ

x
i, K-1, uK-1, χ

w
i, K-1 )           11)        

X K
−          =    2L

i=0  Wi
m
χ

x
i, K/K-1  

 P K
−         =    2L

i=0 Wi 
c
[ χ

x
i,K/K-1- X K

−] [ χ
x
i,K/K-1- X K

−]
T
  

Zi,K/K-1     = h(χ
x
i, K/K-1,χ

v
i, K-1 )  

𝑧 𝐾
−          =   2L

i=0  Wi 
m 

Zi,K/K-1    

 Here X K
− and 𝑧 K

−  are the weighted averages 

representing predicted state and predicted  

measurements respectively. These  predictions are 

used to compute measurement covariances and state-

measurement cross correlation matrices which in turn 

are used to determine Kalman gain KK. 

    Pzz   =    2L
i=0  Wi 

c
 [Zi,K/K-1- 𝑧 𝐾

−] [Zi,K/K-1- 𝑧 𝐾
−]

T
      (12) 

    Pxz   =    2L
i=0  Wi 

c
[ χ

x
i,K/K-1  - X K

− ] [Zi,K/K-1- 𝑧 𝐾
−]

T
 

    KK   = P xz
 
 P zz 

-1
     

Once the Kalman gain KK is computed,  filtered state 

and its covariance are computed as 

   X K/K
  =  X K

−   + KK (zK, - 𝑧 𝐾
− )   

   PK/K  = P K/K-1
 
 - KK P zz KK

T 

Here zK is the new measurement.   

 

3.2. Unscented Kalman filter with additive 

noise 
 

 Authors of this paper have assumed that the 

process noise and measurements noise  are  zero mean 

gaussian and additive for the tracking problem[1]. For 

this case the state of the system need not be 

augmented with state pertaining to noise processes.  A 

set of 2N+1 number of sigma points are defined for a 

state of dimension N.  

The sigma points at time k are given by 

χ0, K-1   =     XK-1
 
                                     for i=0 

  13) 

χi, K-1   =     XK-1+ (   N + λ PK−1)i     for   i= 1,2 

……N 

χi, K-1   =     XK-1- (   N + λ PK−1)i-N    for   i=N+1 

…….2N 

The weights of the mean and covariance are calculated 

as  before 

W0 
m    

=  𝜆/(𝑁 + 𝜆) 
             for i=0          14) 

W0 
c     

=  𝜆/(𝑁 + 𝜆) 
 + 1- 𝛼2 +  𝛽        for i=0      

Wi 
m     

= Wc 
m
  = 1/2(𝑁 + 𝜆) 

       for i=1,2, ….. 2N 

The sigma points are propagated through the non-

linear transformation f(x) to arrive at the new sigma 

points χi, K/K-1.    

χi, K/K-1    =   f(χi, K-1,uK-1 )            15) 

Weighted average of the sigma points gives the 

predicted state and its covariance as 

  X K
−

      =   2N
i=0 Wi

m 
χi, K/K-1  

P K
−       =   2N

i=0 Wi 
c
 [ χi,K/K-1- X K

−
 ] [ χi,K/K-1- X K

−]
T
 + Q K+1 

Q K+1  stands for the covariance matrix of process 

noise. 

To account for the process noise, the sigma points are 

refreshed  as follows 

ξ0, K/K-1    =  𝑋 𝐾
−  for   i = 0                        16) 

ξi, K/K-1     =  𝑋 𝐾
−+ (   N + λ P K

−)i for   i = 1,2 ……N     

ξi,K/K-1     =  𝑋 𝐾
−- (   N + λ P K

− )i-N   

   for   i = N+1 …….2N 

The new sigma points undergo the non-linear 

measurement function h(x), yielding another set of 
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sigma points γi, K. Then their  mean and covariance are 

used to compute predicted measurement z K
−, 

measurement covariance Pzz,  and state-measurement 

cross correlation Pxz,            

         γi, K/K-1      =  h(ξi, K/K-1 )           17) 

 z K
−        =     2N

i=0 Wi
m 

γi, K/K-1  

 Pzz,         =   2N
i=0  Wi

c
 [γ i,K/K-1- z K

−] [γi, K/K-1  - z K
−]

T
   + RK 

Pxz,           =    2N
i=0 Wi

c
  [ξi K/K-1-  - X K

−] [γ i,K/K-1  - z K
−]

T
  

Here  RK  stands for the covariance of measurement 

noise. 

Now the arrival of new measurement ZK is considered. 

Kalman gain and updates of the state are computed as 

follows. 

KK   =  P xz,K
 
 P zz,K 

-1
            18) 

XK/K    =   X K
− + KK (zK  - z K

−)   

PK/K    =   P K
− - KK Pzz KK

T
 

These filter equations are implemented to process the 

noisy radar data. Results are compared with the 

nominal data to assess the efficacy of the 

methodology. 

 

4.0 Estimation of Trajectory of  a typical 

Launch Vehicle  
 

 Even though Kalman filter is an attractive 

tool in the estimation theory, the design of filter for 

optimal estimate needs a difficult tuning of initial 

state, measurement noise and process noise 

covariances [10]. A simple and elegant state space 

model is used to estimate the state of trajectory of a 

Polar Satellite Launch Vehicle [PSLV]  using 

unscented Kalman filter. Performance of the unscented 

Kalman filter for a typical trajectory is shown in the 

following Figure.2 to Figure.14.  
 In the estimation model the state space 

consists of  nine variables namely relative position, 

velocity and acceleration of the target with respect to 

the radar.  It is expressed in the topocentric rotating 

coordinate system as   [ 𝑋  , X,  𝑋 ,𝑌 , Y , 𝑌  , 𝑍  , Z ,  𝑍 ]T
 

 The Topocentric rotating coordinate system is 

defined as the radar as the origin and east, north and 

vertical unit vectors forming the triad [Figure.1]. 

The target measurements are slant range,   

azimuth and elevation of the target from the radar.  

 
Figure.1 Topocentric coordinate system 

        Nominal track data is generated at a sampling 

rate of 10 Hz. Random noise is assumed to be zero 

mean white Gaussian noise and is added to the 

nominal tracking data with the following 

specifications to arrive at simulated track data. The 1 

sigma noise in slant range, azimuth and elevation are 

σr = 10 m  σaz =  0.2  mil rad   and σel = 0.2  mil rad. 

Simulated track data is generated with 1 sigma noise 

for a duration of 500 s  catering to the visibility of 

Sriharikota Range. The simulated data was used to 

generate the initial conditions of the state. Process 

noise for the state is obtained using the model 

uncertainty estimation technique by processing the 

ideal state, a methodology proposed by S.K. Pillai, 

S.S. Balakrishnan, V.Seshagiri Rao and N.Narasaiah 

[11]. The ideal state is generated using rigid body 

dynamics of the rocket as described by three 

dimensional six degree of freedom (6 DOF) equations 

of motion. This concept is successfully used for the 

state estimation of the target using linear Kalman filter 

since 1980s at Sriharikota range.  The authors have 

generated the model compensation values in the 

cartesian frame and  scaled them to take care of the 

dynamics of the vehicle around stage separations. 

These scale factors are arrived  at  after a number of 

simulation runs for different levels of dynamics of the 

vehicle. 

 System model used for time update of the  sigma 

points is     

 XK+ 1   =          Φk    XK               19) 

                                              

Where     Φk    =    
𝐴 0 0
0 𝐴 0
0 0 𝐴

           

 

Here A is defined as    

 A        =    
1 𝑇 𝑇2

2 

0 1 𝑇
0 0 1

                  20) 

 

             0           =   
0 0 0
0 0 0
0 0 0

      

    

 Where T is the sampling period. The authors of 

this paper used the Cholesky  decomposition to arrive 

at the square root of the covariance matrix. 

 

5.0 Results and Discussion 
 

 The relative position and velocity of the 

target with respect to the radar are estimated using the 

system model and measurement model as provided in 

Section 3.0. Authors have assumed that the process 

noise and measurements noise  are  zero mean 
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Gaussian and additive for the tracking problem. 

Unscented scented Kalman filter with additive noise as 

described from Equation 13 to Equation 20  are 

exercised to obtain the filtered estimate. The estimated 

state is used to arrive at the filtered measurements. 

Figures 2 to 4 provide the first differences of the raw 

measurements and the filtered measurements. The 

mean of their first differences provide the rate of the 

measurements and the excursions denote the noise in 

the measurements. It is candidly clear that the  noise 

existent in the angles of raw measurements is around 

0.2 mil rad. It is shown in red color. The blue curve is 

the first difference of the filtered measurements. The 

excursions are very small since the noise is almost 

filtered out.  The filtered state is compared with the 

nominal state and the position and velocity errors are 

computed. These errors in the state are compared 

against  their  ± 1 σ theoretical bounds to establish the 

consistency of the performance of the filter.  

 Consistent performance of the unscented 

Kalman filter can be observed in the Figures 5  to   10. 

The errors in the position and velocity components i.e 

X and 𝑋 , Y and 𝑌 , Z and  𝑍  are plotted against their 1 

σ sigma bounds obtained from the filter’s estimated 

covariance matrices. 

 

 
Figure 2. First differences in slant range (Raw vs  

filtered) 
 

 
Figure 3. First differences in  Azimuth (Raw  vs  

filtered) 

 
Figure 4. First differences in  Elevation (Raw   vs  

filtered) 
 

 
Figure 5. Error in X against its  1 sigma bounds 

 

 
Figure 6. Error in VX against its 1 sigma bounds 

 

 
Figure 7. Error in Y against its  1 sigma  bounds 
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Figure 8. Error in VY against its 1 sigma bounds 

 

 
Figure 9. Error in Z against its  1 sigma  bounds 

 

 
Figure 10. Error in VZ against its 1 sigma bounds 
 

The fact that the errors run with their theoretical 

bounds confirm the consistent behavior of the filter. 

The seeming divergence observed in Y  from T+325 s 

to T+365 s and divergence in Z from T+350 s to 

T+380 s is well captured by the filter  and the errors 

are within their theoretical limits afterwards.    

 Figure 11. provides the position and velocity 

errors in the estimated state  and they are within 5 m 

and 5 m/s respectively throughout the flight time 

except at stage burn out or stage separation events.  

Authors have exercised the extended Kalman filter 

with the same simulated track data and the accuracy of 

estimated state is provided in terms of position and 

velocity errors [Figure.12].  

 It is observed that  with the extended Kalman 

filter the position error is less than 10 m and the 

velocity error less than 10 m/s except at instants of 

sudden change in the dynamics such as stage burn out 

and separation events. Later both filters are exercised 

with tracking data of 3 σ noise and position and 

velocity errors are provided in the Figures. 13 &14 for 

comparison. The position and velocity errors are 10 m 

and around 5 m/s for unscented Kalman filter and 25 

m and 20 m/s for extended Kalman filter respectively. 

 

 
Figure 11. Position and velocity errors from 

Unscented Kalman Filter 
 

 
Figure 12. Position and velocity errors from 

Extended  Kalman Filter 
 

 
Figure 13. Position and velocity errors for USKF 

with measurements of 3 σ noise 
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Figure 14. Position and velocity errors for EKF 

with measurements of 3 σ noise 

 

 Errors in velocity  for extended Kalman filter 

are significantly large whereas they are benign in the 

case of unscented Kalman filter for trajectory 

estimation. The above analysis clearly shows that state 

obtained from Unscented Kalman filter is more 

accurate than that from extended Kalman filter and it 

exhibits a  consistent behavior  for trajectory 

estimation using measurements with different levels of 

gaussian noise.  

 

6.0 Conclusion 

 

 In this paper an effort is made to accurately 

estimate the trajectory of a typical PSLV launch 

vehicle  from noisy radar measurements using 

unscented Kalman filter and to compare it with 

extended Kalman filter. The state and the 

measurement model are defined in  non-linear state 

space and the filters  are exercised over the noisy radar 

measurements. The accuracy of the filtered estimate is 

provided in terms of errors in position and velocity.  

Complexity in filter formulation being the same for 

unscented Kalman filter and extended Kalman filter, 

the performance of the unscented Kalman filter is 

undoubtedly better than extended Kalman filter with 

an added advantage of ease of implementation without 

the usage of analytical derivatives such as jacobians or 

hessians. Performance of the filter is consistent and the 

implementation is elegant. This methodology can be 

extended for higher order non-linear systems also 

without losing any accuracy or stability. Also an 

adaptive estimate of the process noise can be studied 

and implemented  for a  complete on line application 

[12]. 
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