
Tree Based Approach

For
Load Balancing In Grid Environment

Er. Sahil Verma

M-Tech (C.S.E.)

M.M.University, Mullana(Ambala),

Haryana, India.

Sh. Sandip Kumar Goyal

Assoc. Professor, Dept. of CSE

M.M.University, Mullana (Ambala),

Haryana, India.

Er. Kavita

M-Tech (C.S.E.)

M.M.University, Mullana(Ambala),

Haryana, India.

ABSTRACT

The popularity of the Internet and the availability

of powerful computers and high-speed networks as

low-cost commodity components are changing the

way we use computers today. These technical

opportunities have led to the possibility of using

geographically distributed and multi-owner

resources to solve large-scale problems in science,

engineering, and commerce. Recent research on

these topics has led to the emergence of a new

paradigm known as Grid computing.

 To achieve the promising potentials of

tremendous distributed resources, effective and

efficient load balancing algorithms are

fundamentally important. Unfortunately, load

balancing algorithms in traditional parallel and

distributed systems, which usually run on

homogeneous and dedicated resources, cannot

work well in the new circumstances. In this

dissertation, the state of current research on load

balancing algorithms for the new generation of

computational environments will be surveyed and a

new method for tree based approach for load

balancing in grid environment is proposed.

KEYWORDS

 Table 1: Notations used

Symbol Definition
Avgload Average load of grid

Ce Computing Element

Cnts Randomly choosen sits

Cno Cluster Number

Cload Average load of cluster

Clus Cluster with less load

Load Load of site

Noc Number of computing

elements

nos Number of sites

qlength Queuelength of computing

elements

1. INTRODUCTION

1.1 Grid Computing

Grids enable the sharing, selection, and

aggregation of a wide variety of resources

including supercomputers, storage systems, data

sources, and specialized devices that are

geographically distributed and owned by different

organizations for solving large-scale computational

and data intensive problems in science, engineering,

and commerce. The concept of Grid computing [2]

started as a project to link geographically dispersed

supercomputers, but now it has grown far beyond its

original intent.

 The Grid infrastructure [3] can benefit many

applications, including collaborative

engineering,data exploration, high throughput

computing, distributed supercomputing, and

service-oriented computing.

The last decade has seen a substantial

increase in commodity computer and network

performance, mainly as a result of faster hardware

and more sophisticated software. Nevertheless,

there are still problems in the fields of science,

engineering, and business, which cannot be

effectively dealt with using the current

generation of supercomputers. In fact, due to their

size and complexity, these problems are often

resource (computational and data) intensive and

consequently entail the use of a variety of

heterogeneous resources that are not available in a

single organization. The ubiquity of the Internet as

well as the availability of powerful computers and

high-speed network technologies as low-cost

commodity components is rapidly changing the

computing landscape.

These technology opportunities have led to the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

possibility of using wide-area distributed

computers for solving large-scale problems, leading

to what is popularly known as Grid computing. The

term Grid is chosen as an analogy to the electric

power Grid that provides consistent, pervasive,

dependable, transparent access to electricity,

irrespective of its source. Such an approach to

network computing is known by several names:

meta computing, scalable computing, global

computing, Internet computing, and more

recently Peer-to-Peer (P2P) computing [4]

.Moreover, due to the rapid growth of the Internet

and Web, there has been a growing interest in Web-

based distributed computing, and many projects

have been started and aim to exploit the Web as an

infrastructure for running distributed and parallel

applications. In this context, the Web has the

capability to act as a platform for parallel and

collaborative work as well as a key technology to

create a pervasive and ubiquitous Grid-based

infrastructure [3]. The user essentially interacts

with a resource broker that hides the complexities

of Grid computing. The broker discovers resources

that the user can access using information services,

negotiates for access costs using trading services,

maps tasks to resources (scheduling), stages the

application and data for processing (deployment),

starts job execution, and finally gathers the results.

More importantly both resources and end-users are

geographically distributed with different time

zones. In managing such complex Grid

environments, traditional approaches to resource

management that attempt to optimize system-wide

measures of performance cannot be employed. This

is because traditional approaches use centralized

policies that need complete state information and a

common fabric management policy, or

decentralized consensus based policy. In large-

scale Grid environments, it is impossible to define

an acceptable system-wide performance matrix and

common fabric management policy. Apart from the

centralized approach, two other approaches that are

used in distributed resource management are:

hierarchical and decentralized scheduling or a

combination of them. We note that similar

heterogeneity & decentralization complexities exist

in human economies where market driven

economic models have been used to successfully

manage them.

1.2 Load Balancing

A typical distributed system involves a large

number of geographically distributed worker nodes

which can be interconnected and effectively

utilized in order to achieve performances not

ordinarily attainable on a single node. Each worker

node possesses an initial load, which represents an

amount of work to be performed, and may have a

different processing capacity.

 To minimize the time needed to perform all

tasks, the workload has to be evenly distributed

over all nodes which are based on their processing

capabilities. This is why load balancing is needed.

The load balancing problem is closely related to

scheduling and resource allocation. It is concerned

with all techniques allowing an evenly distribution

of the workload among the available resources in a

system. The main objective of a load balancing

consists primarily to optimize the average response

time of applications; this often means the

maintenance the workload proportionally

equivalent on the whole system resources.

 Load balancing is usually described in the

literature as either load balancing or load sharing.

These terms are often used interchangeably, but can

also attract quite distinct definitions.

In the following, we distinguish between three

forms of load balancing.

Load Sharing: This is the coarsest form of load

distribution. Load may only be placed on idle

resources, and can be viewed as a binary problem,

where a resource is either idle or busy.

Load Balancing: Where load sharing is the

coarsest form of load distribution, load balancing

is the finest. Load balancing attempts to ensure that

the workload on each resource is within a small

degree, or balance criterion, of the workload

present on every other resource in the system.

Load Levelling: Load levelling introduces a third

category of load balancing to describe the middle

ground between the two extremes of load sharing

and load balancing. Rather than trying to obtain a

strictly even distribution of load across all

resources, or simply utilizing idle resources, load

levelling seeks to avoid congestion on any

resource. A Grid load balancer receives

applications from Grid users, selects feasible

resources for these applications according to

acquired information, and finally generates

application-to-resource mappings , on the basis of

objective functions and predicted resource

performance. Basically , a load balancing system

can be generalized into four basic steps:

(1) Monitoring resource load and state.

(2) Exchanging load and state information between

resources.

(3) Calculating the new load distribution.

(4) Updating data movement.

1.3 Load Balancing Problem

This problem has been discussed in traditional

distributed systems literature for more than two

decades. Various strategies and algorithms have

been proposed, implemented and classified in a

number of studies [5], [6]. Load balancing

algorithms can be classified into two categories:

static or dynamic. In static algorithms, the

decisions related to load balance are made at

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

compile time when resource requirements are

estimated. A multicomputer with dynamic load

balancing allocate/reallocate resources at runtime

based on no a priori task information, which may

determine when and whose tasks can be migrated.

A good description of customized load balancing

strategies for a network of workstations can be

found in [7]. More recently, Houle and al. [8]

consider algorithms for static load balancing on

trees, assuming that the total load is fixed. Contrary

to the traditional distributed systems for which a

plethora of algorithms have been proposed, few of

which were focussed on grid computing. This is

due to the innovation and the specific

characteristics of this infrastructure.

2. RELATED WORK

2.1 TREE-BASED BALANCING

MODEL

In order to well explain as model, we first define

the topological structure for a grid computing.

Research works on load balancing has been

focused on system-level load balancing or task

scheduling [9],[10]. Their main objective is to

maximize the overall throughput or average

response time. Most application-level load

balancing approaches are oriented on application

partitioning via graph algorithms. However, it does

not address the issue of reducing migration cost.

That is the cost entailed by load redistribution,

which can consume order of magnitude more time

than the actual computation of a new

decomposition. Some works have proposed a

latency-tolerant algorithm that takes advantage of

overlapping the internal data computation and

incoming data communication to reduce data

migration cost. Unfortunately, it requires

applications to provide such a parallelism between

data processing and migration, which restricts its

applicability. Propose a dynamic load balancing

approach to provide application level load

balancing for individual parallel jobs in Grid

computing environment. Agent-based approaches

[11] have been tried to provide load balancing in

cluster of machines [12]. Enhance the

MPI_Scatterv primitive to support master-slave

load balancing by taking into consideration the

optimization of computation and data distribution

using a linear programming algorithm. However,

this solution is limited to static load balancing.[13]

propose an optimal data migration algorithm in

diffusive dynamic load balancing through the

calculation of Lagrange multiplier of the Euclidean

form of transferred weight. This work can

effectively minimize the data movement in

homogeneous environments, but it does not

consider the network heterogeneity. In particular,

workload migration is critical to be considered

because the wide area network performance is

dynamic, changing throughout execution, instable,

etc., in addition to considering the resource

heterogeneity. This communication aspect is

neglected in traditional application-level load

balancing strategies. Scheduling sets of

computational tasks on distributed platforms is a

key issue but a difficult problem. Although, as

mentioned above, a large number of scheduling

techniques and heuristics have been presented in

the literature, most of them target only

homogeneous resources. However, modern

computing systems, such as the computational

Grid, are most likely to be widely distributed and

strongly heterogeneous. Therefore, it is essential to

consider the impact of heterogeneity on the design

and analysis of scheduling techniques. The

traditional objective, when scheduling sets of

computational tasks, is to minimize the overall

execution time called makespan. However, in the

context of heterogeneous distributed platforms,

makespan minimization problem is in most cases

NP-complete, sometimes even APX-complete.

When dealing with large scale systems, an absolute

minimization of the total execution time is not the

only objective of a load balancing strategy. We

think that the communication cost, induced by load

redistribution, is also a critical issue. For this

purpose, we propose, in this paper, a novel load

balancing strategy to address the new challenges in

Grid computing.

3. SYSTEM MODEL

3.1 Load balancing Generic model

 Figure 3.1 Load Balancing Generic Model

Our model is represented by an incremental tree

where root of the tree is known as the grid and a

software running on the grid is grid manager which

is responsible to manage all cluster information of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

the grid and provide fault tolerance to the grid. Leaf

of the tree are known as computing elements of a

site. A grid consists of various clusters and clusters

are consists of various sites or we can say that

various sites are aggregated to form the cluster and

various computing elements are aggregated to form

a site. Information about the computing elements

status is stored on site. A software running on site

is called computing elements manager. Each cluster

have information about the load of its sites which

are underlying under it. Software running on the

cluster is known as the sites manager as it manages

the load of the sites which are under the cluster and

if any site under it will fail then it distribute its load

to the less loaded site of it and prevent from failure

of whole cluster due to the failure of site and hence

provide fault tolerance to cluster. This model is

denoted by S/G/M, where S is the number of

clusters that compose a grid, G is the number of

sites in each cluster and M is the number of

computing elements in each sites. This model can

be transformed into three specific model: S/G/M,

1/G/M, 1/1/M, depending on the values of S and G.

It represents a four–level tree. Each level has its

own specific function whose description is as

follows.

 Level 0: It is the top level (root) of the

tree called grid having grid manager

deployed on it. Its main functions are:

(i) To maintain or manage all clusters

workload information of the grid.

(ii) All decision making regarding the

allocation of task for inter cluster load

balancing are taken by it.

(iii) It provide fault tolerance to the grid as

if any cluster under it will fail then it

prevent from the failure of whole grid due

to the failure of cluster by taking the

appropriate decision.

 Level 1: It contains S virtual nodes. Nodes

of this level are known as clusters having

sites manager deployed on it. Site manager

is responsible to manage workload of sites

under the cluster and provide fault

tolerance to the cluster in case of failure of

site.

 Level 2: This is the third level and nodes

of this level are sites having computing

elements manager deployed on it. Nodes

of this level are responsible to provide

fault tolerance to the site in case of failure

of any computing element of site and it

also manages the workload of their

computing elements.

 Level 3: This is the last level and this is

the leaves of the tree. It represents

computing elements associated with the

various sites. Figure 3.1 shows the load

balancing generic model, with its three

variants: 1/1/M, 1/G/M, S/G/M.

3.2 Characteristics of the proposed

model

The main features of our proposed load balancing

generic model are listed below:

1) It is hierarchical: This characteristic facilitate

the information flow through the tree and well

defines the message traffic in our strategy.

2) It supports scalability of grids: Adding or

removing entities (computing

 elements, sites or clusters) are very simple

operations in our model

(adding or removing nodes, sub-trees).

3) It is totally independent from any physical

architecture of a grid: The transformation of a grid

into a tree is an univocal transformation. Each grid

corresponds to one and only one tree.

3.3 Proposed Algorithm

Step 1: Cluster Creation algorithm:

1. Initialize cno, site, ce, qlength, nos.

2. For cno=1 to 10.

i) Generate number of sites between 1 to 5

randomly.

ii) Generate computing element ce of each site

between 1 to 5 randomly.

iii) Generate queue length of each computing

element ce between 1 to 50 randomly.

end For.

Step 2: Load Calculation for 10 cluster’s

sites algorithm:

1. Initialize site, cno.

2. For cno=1 to 10.

Call calculateLoad(cno,site).

end For

 calculateLoad(cno,site)

1. Initialize avgload=0, load=0.

2. Calculate avgload of site s and cluster cno into

variable load.

3. Calculate avgload of grid into variable avgload.

4. Calculate newload=Math.abs((load-

avgload)/load.

5. If(newload<=threshold)

 then no need to balance.

else

load balancing is required.

end If

Step 3: Intrasite load balancing

algorithm:

1. Initialize cno, cnts, ce.

2. Input cluster number into cno.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. Choose site cnts and computing element ce of

cluster number cno randomly.

4. Call intraSite(cno,cnts,ce).

5. If site cnts of cluster number cno is overloaded

then

 Call intraSite(cno,cnts,ce).

 else

 No need to balance the site.

end If

intrasite(cno,cnts,ce)

1. Initialize noc=0, load=0, avgload=0, share=0,

cntce=0.

2. Calculate number of computing element noc in

cluster cno.

3. If noc==1 then

Intra site load balancing is not possible.

Else

- Choose new Computing element newce of site

cnts of cluster cno randomly.

- Calculate load of Computing element ce into load

and average of grid into avgload.

- Calculate share=Math.abs(avgload-load).

- Add share to the load of new Computing element

newce of site cnts of cluster cno.

- Subtract share from the load of Computing

element ce of site cnts of cluster cno.

end If

Step 4: Intersite load balancing

algorithm:

1. Initialize cno, cnts.

2. Input cluster number into cno.

3. Choose site cnts of cluster number cno

randomly.

4. Calculate no of computing element into variable

noc.

5. Change or update qlength of computing element

ce in site cnts in cluster number cno b/w 40 to 80.

6. Call calculateLoad(cno,cnts).

7. After increasing load if site become overloaded

- Call InterSite(cno,cnts).

- After 20 attempt if the site is overloaded then

- Call intercluster(cno).

else

No need of balancing.

end If.

InterSite(cno,cnts)

1. Initialize nos=0, nos1=0, load=0, avgload=0,

share=0, cntce=0.

2. Calculate no of sites nos in cluster number cno.

3. If(nos==1) then

Number of site is 1 , intersite load balancing is not

possible.

Else

- Calculate newsite=generateRandomSite

(nos1,site).\\ For balancing it randomly chosen site

is newsite.

- Calculate load of site into load and average of

grid into avgload.

- Calculate share=Math.abs(avgload-load).

- Add share to the qlength q of computing element

ce of new site newsite of cluster cno.

- Subtract share from the load of site site of cluster

cno.

- Call calculateLoad(cno,newsite).

- Call calculateLoad(cno,site).

end If.

Step 5: Intercluster load balancing

algorithm:

1. Initialize cno, lo.

2. Input cluster number into cno.

3. For each site s in cluster cno

- Increase load or qlength of each computing

element of site s

- Call calculateload(cno,s).

end For

4. calculate lo=checkLoad(cno).

5. If(lo==1)

Call intercluster(cno).

end If

intercluster(cno)

1. Initialize cload, clus, nos, nloads, noc.

2. Calculate avgload of cluster cno into variable

cload.

3. Choose cluster with less load into variable clus

and its load into

 variable load.

4. Calculate share=Math.abs(avg-load).

5. Choose site s1 of cluster clus randomly.

6. Choose computing element into variable ce1 of

site s1 randomly.

7. Update qlength of computing element ce1 of site

s1 of cluster clus

- qlength=qlength+share.

- calculateload(clus,s1).

8. Choose site s2 of overloaded cluster cno.

9. Choose computing element ce2 of site s2 of

cluster cno.

10. Update qlength of computing element ce2 of

site s2 of cluster cno

qlength=qlength-share.

11. Call calculateload(cno,s2).

checkLoad(cno)

1. Initialize chk=0, avgload=0, lo=0.

2. Calculate load and avgload of cluster cno.

3.Calculate newload=Math.abs((chk-avgload)

/chk).

4. If(newload<=threshold) then

No need to balance.

lo=0.

else

lo=1.

load balancing is required.

end If.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Step 6: Display cluster algorithm:

1. Initialize cno.

2. Input cluster number into cno.

3. Call display(cno).

4. Call displayLoad(cno).

display(cno)

1. Display sites of each cluster and computing

element in each sites with its queue length.

displayLoad(cno)

1. Calculate load of site1 in cluster number cno.

2. If(loaded.equals("1")) then

load balancing is required.

else

No need to balance.

end If.

4. CONCLUSION AND FUTURE

WORK

In this dissertation, simulator of Tree Based

Approach for Load Balancing in Grid Environment

is build. In this, 10 clusters are created. Each

Cluster has 1 to 5 sites and each site have 1 to 5

computing elements. For intra-site load balancing

we have queue length of computing elements from

10 to 40. For inter-site load balancing queue length

of computing element is increased from 40 to 80

and then intersite load balancing is done. For

intercluster load of cluster is increased by assigning

queue length of all computing elements from 40 to

80 and intercluster load balancing is done by

choosing the cluster which have less load. In this

way, we have implemented various scenarios

showing the intrasite, inter-site and intercluster

load balancing in grid environment.

Future work may include following

points:

i) Resources can be taken as heterogeneous.

ii) Random arrival of jobs can be considered.

5. REFERENCES

[1] Belabbas Yagoubi and Yahya Slimani ,

“Dynamic Load Balancing Strategy for Grid

Computing,” World Academy of Science,

Engineering and Technology, 2006.

[2] M. Baker, R.Buyya, and D. Laforenza, “Grids

and grid technologies

for wide-area distributed computing,” International

Journal of Software: Practice and Experience

(SPE), 2002.

[3] F. Berman, G. Fox, and Y. Hey, “Grid

Computing: Making the Global Infrastructure a

Reality,” Wiley Series in Communications

Networking & Distributed Systems, 2003.

[4] C. Chen, K.C. Tsai., “The server reassignment

problem for load balancing in structured P2P

systems,” IEEE Transaction on Parallel Distributed

Systems, 19(2) : 234–246, 2008.

[5] W. Leinberger, G. Karypis, V. Kumar, and R.

Biswas, “Load balancing across near-homogeneous

multi-resource servers,” In 9th Heterogeneous

Computing Workshop, pp 60–71, 2000.

[6] C.Z. Xu and F.C.M. Lau, “Load Balancing in

Parallel Computers: Theory and Practice,” Kluwer,

Boston, MA, 1997.

[7] M.J. Zaki, W. Li, and S. Parthasarathy, “

Customized dynamic load balancing for a network

of workstations,” In Proceeding of the 5th IEEE

International Symposium HDPC, pp 282–291,

1996.

[8] M. Houle, A. Symnovis, and D. Wood,

“Dimension-exchange algorithms for load

balancing on trees,” In Proceedings of 9th

International Colloquium on Structural Information

and Communication Complexity, pp 181–196,

Andros, Greece, June 2002.

 [9] B. Yagoubi, and M. Medebber, “A load

balancing model for grid environment,” In

Proceeding of 22
nd

 International Symposium on

Computer and Information Sciences (ISCISC

2007), pp. 1-7, 7 November 2007.

 [10] B.Yagoubi, “Dynamic load balancing for

beowulf clusters,”In Proceeding of the 2005

International Arab Conference On information

Technology,pp 394–401, Israa University, Jordan,

December 2005.

[11] J. Cao, D.P. Spooner, S. A. Jarvi, and G.R.

Nudd, “Grid load balancing using intelligent

agents,” Future Generation Computer Systems,

135-149, January 2005.

[12] Rodrigo Fernandes de Mello, and Luciano

Jos´e Senger, “ A Routing Load Balancing Policy

for Grid Computing Environments,” In Proceedings

of the 20th International Conference on Advanced

Information Networking and Applications

(AINA’06), IEEE, 2006.

 [13] H. Shan, L. Oliker, R. Biswas, and W. Smith,

“Scheduling in heterogeneous grid

environments: The effects of data migration,” In

Proceedings of (ADCOM2004) International

Conference on Advanced Computing and

Communication, India, December 2004.

[14] M. Dobber, R. Mei, and G. Koole, “ Dynamic

Load Balancing and Job Replication in a Global-

Scale Grid Environment: A Comparison,” IEEE

Transaction on Parallel and Distributed Systems,

20(2): 207- 218, February 2009.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

