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Abstract—Compressed sensing (CS) based SAR imaging 

approacheshave shown its superior capability in providing 

high quality SAR images and reducing the storage pressure. 

However, such performance will degraded when the number of 

measurements is not sufficient. To significantly reducing the 

sampling number, we adopt a nonconvex model to deeply 

exploit the two-dimensional (2D) sparsity in both range and 

azimuth dimensions, and a two-dimensional gradient 

projection (TDGP) scheme is employed for fast reconstruction, 

finally, a new compressive SAR imaging is proposed. The 

simulation results demonstrate the superior reconstruction 

performance of the proposed algorithm. 

IndexTerms—SAR Imaging; Compressed Sensing (CS); 

Nonconvex Model; Gradient Projection. 

I. INTRODUCTION 

Synthetic aperture radar (SAR) is a radar imaging 

technology that is capable of producing high resolution 

images of the stationary surface targets. The main 

advantages of SAR are that it can reduce the effects of 

clouds and fog and allow them to be independent of external 

sources for imaging, having day and night and all-weather 

imaging capability. Traditional compressions of SAR data 

utilize the redundancy inherent in sampled data under the 

Nyquist theorem to achieve compressed representation and 

profitable transmission. This theory claims that one must 

sample at least two times faster than the signal bandwidth 

while capturing it without losing information. Thereby there 

are large amounts of onboard data that have to be stored and 

it inevitably results in complex computation and expensive 

hardware. 

Candès, Tao and Romberg [1] and Donoho [2] have 

proposedan approach, known as compressed sensing (CS), in 

which arandom linear projection is used to acquire efficient 

representations of compressible signals directly. The theory 

of CS states that it is possible to recover sparse images from 

a small number of random measurements, provided that the 

under-sampling results in noise like artifacts in the transform 

domain and an appropriate nonlinear recovery scheme is 

used [3]. Because of its compressed sampling ability, 

compressed sensing has found many applications in radar 

and remote sensing, and other fields.  

R.Baraniuk et al. proposed the radar imaging system 

based on CS for the first time [4]. The papers [5, 6] use CS 

in along-track interferometric SAR imaging and moving 

target velocity estimation. Some major open questions 

related with the application of CS to SAR and ISAR are 

listed in [7]. 

In [8], Li introduces a novel two-dimensional (2-D) SAR 

imaging algorithm based on CS theory to reconstruct 2-D 

targets in the range and azimuth dimension, respectively. 

This algorithm provides the approach of receiving the echo 

data via 2-D random sparse sampling beyond the Nyquist 

theorem. This radar system randomly transmits fewer pulses 

in azimuth direction and samples fewer data than traditional 

systems at random intervals in range direction.  

In this paper, we focus on SAR imaging from under-

sampled target return in both range and azimuth dimensions, 

and finally, propose a nonconvex model for robust image 

reconstruction.  

The reminder of this paper is organized as 

follows.Section II reviews the CS theory. Section III presents 

the SAR imaging with 2Ddownsampling. Section IV 

presents the proposed two-dimensional nonconvex gradient 

projection (TDNGP) algorithm. The experimental results are 

shown in section V. Finally, Conclusions are given in  

section VI. 

II. REVIEW OF CS THEORY 

The CS theory points out that, any sparse or compressible 

signal vector𝑥 ∈ ℝ𝑁has a sparse representation in the basis 

dictionaryΨ, i.e.,𝑥 = Ψ𝜗, low-dimensional measurements 

vector 𝑦 ∈ ℝ𝑀  of the signal 𝑥is calculated through an 

irrelevant observation matrixΦ ∈ ℝ𝑀×𝑁  (𝑀 ≪ 𝑁). Then the 

information of the signal 𝑥can be obtained by resolving the 

following optimization problem. 

 𝐿0 min
𝜗∈ℝ𝑁

 𝜗 0 ,   s.t. 𝑦 = Ξ𝜗(1) 

where  .  0represents ℓ0norm and Ξ = ΦΨ.  

Since resolving program in Eq. 1 is an NP-hard problem, 

Donoho [2], Cands [9], Romberg [10], and Tao [1] proposed 

the following relax convex optimal model: 

 𝐿1 𝑚𝑖𝑛
𝜗∈ℝ𝑁

 𝜗 1 ,   s.t. 𝑦 = 𝛯𝜗(2) 

They also pointed out that Eq. 2 has the same solution with 

the Eq. 1 when the number of measurements 𝑀satisfies the 
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inequality constraint 𝑀 ≥ 𝑏𝐾log𝑁 (b is a constant, K 

represents the sparsity degree of the signal, N is the length 

of the signal). Many algorithms have been developed to 

solve this model, such as LASSO [11], BP [12], and GPSR 

[13] which is often being significantly faster (in terms of 

computation time) especially in large-scale settings. 

The research of Cands [9] and Chartrand [10] discovered 

that, when the constraint condition𝑀 ≥ 𝑏𝐾log𝑁cannot be 

satisfied, the minimization of (𝐿1) has different solutions 

from that of (𝐿0) norm, which means program (𝐿1) cannot 

fully exploit sparsity of the signal. So Cands introduced  

a sparsity promoting weighted ℓ1 norm to better approximate 

(ℓ0) norm. Since 𝜗 0 = lim𝑝→0   𝜗𝑖 
𝑝

𝑖 , Chartrand 

proposed an iterative weighted least squares 

(FOCUSS/IRLS) to solve the minimization of ℓ0≤𝑝≤1norm, 

and the corresponding nonconvex model is as follows: 

 𝐿𝑝 min
𝜗∈ℝ𝑁

𝐸(𝑝) ,   s.t. 𝑦 = Ξ𝜗(3) 

where 𝐸 𝑝  𝜗 =  𝜗 𝑝
𝑝

=   𝜗𝑖 
𝑝𝑁

𝑖=1 . However, for a large 

sized image, FOCUSS algorithm process (the process of 

calculating least-squares solution) requires huge calculations 

which will seriously influence the reconstructed speed and 

decrease the recovered image quality and consequently 

prevent this algorithm from widely used in the field of 

image. 

Inspired by the fast performance of the GPSR (convex 

CS) and the ability FOCUSS (nonconvex CS) to overcome 

the insufficient measurements by solving the ℓ0≤𝑝≤1 norm in 

which the nonconvex problem is converted into convex one, 

we propose a novel fast algorithm named Two-Dimensional 

Nonconvex Gradient Projection (TDNGP) based on mini-

mization of ℓ0≤𝑝≤1 norm, which can succeed in the process 

of large-scale image, and adopt it in SAR imaging. 

III. SAR IMAGING WITH 2D DOWNSAMPLING 

This section will describe the 2D downsampling scheme 

for the strip-map SARimaging,the imaging geometry can be 

referred to Fig.1.According to SAR imaging process to 

construct a two-dimensional joint basis matrix, the coming 

echo will be transformed into a product form of the basis 

matrix and the scene scattering coefficient vector while two 

dimensional reconstruction. 


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Figure 1, Strip-map SAR data acquisition mode 
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Figure 2, 2D scene division map 

If the slow time (𝑡𝑚 ) sequence length is 𝑀, fast time (𝑡 ) 
sequence length is 𝑁, then the echo signal is𝑀 × 𝑁 

dimensional matrix. The scene according to the azimuth and 

range dimensions respectively wasdivided equally  

into 𝑀 × 𝑁 small squares ∆𝑥 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 )/𝑀,  

∆𝑟 = (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛 )/𝑁, as shown in Fig. 2. 

Consider each small square can only have one scattering 

point (with the same resolution), if there is a target then 

scattering coefficient is not zero, and vice versa. The scene 

grid is divided into small squares with a unified numbers  

of(1,2,3, … , 𝑛),  where𝑛 = 𝑀 × 𝑁. 

Assuming LFM signal is transmitted as： 

 2ˆ ˆ ˆ( ) exp( 2 )t r cS t j f t j t     (4) 

where𝑡  is the transmission fast time, 𝜔𝑟  is the range window 

function, 𝑓𝑐  is the carrier frequency, 𝛾 is the modulation 

frequency. 

Assume𝑓𝑐 = 0, then the echo baseband signal is： 

   

1

4 2
( , ) exp  

n
i m i m

r m i r

i

j R t R t
S t t t

c


 



 



   
   

   
  

  
 

2

2
exp

i m

a m

R t
t j t

c
 

  
  

  
 (5) 

where 𝑡𝑚  is the radar time (slow time),𝜎𝑖  and 𝑅𝑖(𝑡𝑚 )are the  

i-thscattering coefficient and point target rangerespectively,  

λ is the signal wavelength, 𝑐 is the light speed, 𝜔𝑎  is the 

azimuth window function. 

The echo baseband signal is analyzed line by line, where 

the k-th line signal is: 

   

1

4 2
( , ) exp  

n
i k i k

r k i r

i

j R t R t
S t t t

c


 



 



   
   

   
  

  
 

2

2
exp

i k

a k

R t
t j t

c
 

  
  

  
 (6) 

with the a assumption that: 

 
 

 2 4
( ) exp

i k i k

i k r a k

R t R t
h t t t j

c


 



   
     

   
 

 
 

2

2
exp

i kR t
j t

c


  
  

  
 (7) 
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thenEq. 6 can be written as: 

 
1 1( , ) ( )T

r k N k N n nS t t H t 


    (8) 

where𝐻 𝑡𝑘 =  𝑕1 𝑡𝑘 , 𝑕2 𝑡𝑘 , … , 𝑕𝑖 𝑡𝑘 , … , 𝑕𝑛 𝑡𝑘  𝑁×𝑛 , 

𝜎 =  𝜎1, 𝜎2, … , 𝜎𝑛 𝑛×1
𝑇 . Similarly, the baseband echo signal 

can be expressed as: 

 ( ) 1( , ) ( )T

r m m N M n nS t t H t 


    (9) 

where 𝑡𝑚  =  𝐻 𝑡1 , 𝐻 𝑡2 , … , 𝐻 𝑡𝑀   𝑁×𝑀 ×𝑛 , namely the 

two-dimensional joint basis matrix. 

Analysis of the above formula, we find that the left side 

of the equation is the echo signal pulled into one column, 

which contains all the echo information and related 

information. Thus as the observed signal will contain richer 

information than a single line signal contains, so the 

reconstruction results will be improved. Moreover, 

traditional algorithm should first perform range migration 

correction as the coupling between the echo range and 

azimuth dimensions does not exist, so the two-dimensional 

separate reconstruction needs more processing. In this 

formula the echo signal will be written in vector 

multiplication form of a large matrix and the objectives 

scattering coefficients, without range migration correction, 

therefore no distinction between broadside and squint modes 

which makes the algorithm more pervasive. 

IV.  PROPOSED IMAGING ALGORITHM (TDNGP) 

Traditional SAR imaging algorithms are performed based 

on matched filtering and Nyquist theory. Our proposed 

algorithm doesn’t use matched filtering and can reconstruct a 

high quality image from echo data beyond Nyquist theorem 

using CS theory and even without the sparsity constraint 

satisfied by using the nonconvex approach. Figure 3 shows 

simple diagrams for the traditional range Doppler (RD) 

algorithm and the proposed two-dimensional nonconvex 

gradient projection (TDNGP) algorithm. 
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Figure 3, (a) Traditional RD(b) The TDNGP 

As been shown in Fig. 1, in strip-map SAR mode the 

echo can be written as: 

  ˆ, T

R m M M M N N N
M N

S t t    


   (10) 

where𝜎is the scene scattering coefficient. 𝜙andΨ are the 

basis matrices for azimuth and range dimensions 

respectively, so we can get the following imaging solution 

model: 

  min ,  s.t   0 1
p

A Rp
u Echo u p      (11) 

where𝑢 is a vectorized form for 𝜎, Φ𝐴  and Φ𝑅 .are the 

azimuth and range dimension basis matrices respectively  

In gradient projection framework, the first step is to 

compute the gradient𝑑𝑘  of  𝑢 𝑝
𝑝
 

  1
1 1 1

p

k u k k kp p
d u u u       (12) 

where Θ 𝑢𝑘−1 = 𝑑𝑖𝑎𝑔  𝑢𝑘−1 𝑖  
2 + 𝜀 𝑝−2, and𝑝 − 2 < 0, 

the parameter 𝜀 is introduced into the weight Θ to avoidthe 

appearance of singular matrix at each iteration. 

To make sure the solution converges stably, the step-size 

𝛼𝑘  should satisfy 

 
1min

k

p

k k k k p
u u d


   (13) 

Considering the nonconvex property of the ℓ0≤𝑝≤1 norm, 

the solution of 𝛼𝑘can’t be achieved precisely according to 

Eq.13. In the methodology of gradient projection (GP), many 

methods can be utilized to get proper estimation of 𝛼𝑘 , such 

as linear search. However, it has been testified that such 

option is time-consuming [14], especially for nonconvex 

model. In the proposed method, inspired by FOCUSS/IRLS, 

we make use of the methodology of the reweighted ℓ2 norm, 

and the step-size 𝛼𝑘  should satisfy 

    1 1min min
k k

T

k k k k k kE u d u d
 

      

   1 1k k k ku u d    (14) 

where𝐸 𝑢 = 𝑢𝑇Θ 𝑢𝑘−1 𝑢, then making a differential with 

respect to 𝛼𝑘  deduces: 

    1 1

T T

k k k kk k k k kd d d dE u d u         (15) 

Let Eq. 15 equals zero, the step-size 𝛼𝑘  is: 

 
 1

,

,

k k

k

k k k

d d

d u d







 (16) 

where  .   denotes the inner product process. To make sure 

the equality constraint 𝐸𝑐𝑕𝑜 = Φ𝐴𝑢Φ𝑅, the descending 

direction 𝑑 𝑘  can be obtained via projecting the gradient 𝑑𝑘  

into the null space of Φ as: 

 † †

k k A A k R Rd d d      (17) 

where( . )†  denotes the generalized inverse procedure. Then 

the new estimation of 𝑢 in the (k+1)-th iteration can be 

updated as: 

 
1 kk k ku u d   (18) 

The process ends when reaching the maximum number 

of iteration or threshold condition is satisfied.  
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The TDNGP algorithm can be concluded as: 

(1) Initialize： † †

0 A Ru Echo   ， 0 ， : 1k  ； 

(2) Calculate gradient of   1

𝑝
 𝑢𝑘−1 𝑝

𝑝
： 

 

   

1
1 1 1

2
2

1 1 1

;

p

k u k k kp p

p

k k k

d u u u

u diag u i 

  



  

    



 
   

 

 

(3)Step calculation: 
 1

,

,

k k

k

k k k

d d

d u d







; 

(4) The null space projection： 

   † †
k k A A k R Rd d d     ; 

 update 
1 kk k ku u d   ; 

(5) Setting a threshold value ，If 
1k ku u   ，

: 1k k  ，go to step (2), else stop. 

V. EXPERIMENTAL DESIGN 

To verify the validity of the proposed image formation 

algorithm, the following raw data simulation and 

experiments have been done. The raw data for a scene with 

five point targets were simulated according strip-map SAR 

mode with the parameters listed in Table I. The resulting 

image using full-sampling data obtained under the traditional 

RD algorithm is shown in Fig. 4. 

Experiments comparison with the proposed TDNGP, 

GPSR, and the CVX [15] algorithms for SAR 

imagingwithdifferent random sampling rates in both range 

and azimuth dimensions are tested. We also compare the 

quality and CPU elapsed time for image reconstruction under 

these algorithms. In the GPSR and CVX algorithm, range 

and azimuth dimensions reconstruction processing are 

performed separately, while our proposed TDNGP algorithm 

performs the two dimensional reconstruction directly. Figure 

5 shows two imaging results for the GPSR, TDNGP, and 

CVXalgorithms at two different random sampling rates 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Transmit bandwidth 60 MHz 

Pulse duration 5 µs 

Carrier frequency 10 GHz 

Antenna length 4m 

Platform velocity 100 m/s 

Platform height 3000 m 

Point targets coordinates 
(0,3900)  (0,4000)  (0,4100) 

(-50,4000)  (50,4000) 

(12.66%, 3.42%), the random sampling is in both range and 

azimuth dimensions. Comparing images quality, it can be 

seen that the GPSR is the lowest resolution imaging 

algorithm, TDNGP algorithm and CVX algorithm imaging 

quality are equivalent. Table II shows measured parameters 

for the bottom target in the reconstructed images using 

3.42% sampling rate. Comparing running time, TDNGP 

requires only 4~5 times of the GPSR required time, and 

CVX costs 150~300 times of the TDNGP required time. 

Figure 6 shows the time comparison at different sampling 

rates. The previous experiments show that even with a 

significant reduction in the SAR echo, the proposed 

algorithm can make fast reconstruction for a high quality 

images. 

 
Figure 4, SAR image using traditional RD 

 
Figure 5, Comparison results of imaging algorithms under different 

sampling rates 
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(e)  12.66%         (CVX)           (f)  3.42% 
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(c) 12.66%       (TDNGP)        (d)  3.42% 
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(a)  12.66%         (GPSR)          (b)  3.42% 
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TABLE II.  COMPARISON OF RESOLUTION ANALYSIS AT THE BOTTOM 

TARGET FOR RECONSTRUCTED IMAGES FROM 3.42% SAMPLING RATE 

 GPSR TDNGP CVX 

3dB(A)  m 1.7319 0.8061 0.9338 

3dB(R)  m 2.6479 1.1990 1.2490 

PSLR(A) dB -14.9170 -18.3098 -19.0603 

PSLR(R) dB -11.7282 -16.4402 -14.0146 

ISLR(A) dB -10.3454 -14.1775 -14.7972 

ISLR(R) dB -9.6142 -12.2230 -13.9128 

Time (s) 3.1 26.5 1215.1 

 

Figure 6, Comparison results of the CPU elapsed time for 
different algorithms under different sampling rates 

VI. CONCLUSION 

The proposed algorithm (TDNGP) is based on solving 

the nonconvex optimization problem with gradient 

projection and combining with the two-dimensional CS 

reconstruction. Since the proposed algorithm only involves 

some matrix-vector products, it is easy to implement fast 

implicit operation and make it possible to take use of the 

advantage of ℓ0≤p≤1 semi-norm based model practically in 

large-scale applications such as SAR image reconstruction, 

which is a hard task for common procedure for ℓ0≤p≤1semi-

norm optimization such as FOCUSS/IRLS. The simulation 

of SAR image reconstruction shows the super-performance 

of the proposed algorithm in the quality improvement and 

the significant reduction in the required time which has 

consequently a great advantage on the SAR imaging 

problem. 
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