
Two Way Approach For Matching Regular Expressions Using Multi-Threading

And Reversing

Pankaj Panigrahi

Student,CET BBSR

Amitav Mohapatra

Lecturer,CET BBSR

Abstract

Regular expressions are a common choice for defining

configurable rules for data parsing because of their

expressiveness in detecting recurrent patterns and

information. Regular expression matching is the first

line of defense in performing online data filtering.

Unfortunately, few solutions can keep up with the

increasing data rates and the complexity posed by sets

with hundreds of expressions. The two most popularly

used methods for regular expression matching are

pipelined char grid architecture and RE-NFA

architecture. In this present scenario a method can be

implemented to reduce the number of the regular

expressions mismatches. Our model implements the

concepts of RE-NFA, multi-threading, semaphores,

reversing of regular expression, so as to reduce the

time taken to find a regular expression mismatch.

1. Introduction

Regular expressions concisely describe a set of

strings without explicitly listing the set content. Each

expression consists of one or more strings connected

with a set of operators such as alternate (|), which

chooses among two strings; repetition (*), which

repeats a string zero or more times; and optional (?).

Given an input string, a matching operation determines

if that string is a possible pattern instance. An example

is ABC*D, which recognizes any string that starts with

AB, continues with zero or more C, and finishes with

D. Sample matching input strings might be ABD,

ABCD, or ABCCCD.

Very fast regular expression matching is currently a

hot topic in applied research, with more applications

searching large pattern sets with increasingly faster data

streams [3]. Deep packet inspection is one of the most

demanding applications, and regular expressions are a

common threat-detection mechanism in both

commercial and open source NIDSs.

Regular ex engines typically rely on deterministic

finite automata (DFAs) or nondeterministic finite

automata (NFAs). DFAs, which require only one state

traversal per character, yield higher parsing rates when

they are not memory constrained. NFAs are more

memory efficient; recent cache-friendly

implementations of enhanced NFAs can provide

gigabit-per-second processing rates with dictionaries

that contain hundreds of thousands of keywords.

Our model suggests a method to reduce the time

taken to find a regular expression mismatch. A Non-

deterministic Finite Automata is used to match a string

with a regular expression. We have devised a method in

which the regular expression to be matched is reversed

and the NFA is created accordingly. String is then

parsed in reverse order. The model implements the

regular RE-NFA parsing and the proposed model

simultaneously using multi-threading. The two process

running simultaneously would signal each other in case

of any mismatch.

2. Existing Techniques
The two popular methods for matching regular

expressions are pipelined char grid architecture and

regular expression NFA. Both NFA and DFA are

widely used for matching of regular expressions.

2.1 Pipelined char grid architecture

In this method, using techniques from graph theory,

the patterns are partitioned n-ways such that the

number of repeated characters within a partition is

maximized, while the number of characters repeated

between partitions is minimized, the system can be

composed of n pipelines, each with a minimum of bit

lines
[1]

.

1020

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

 Sibendu Dey
Student,CET BBSR

Anindita pani
Student,CET BBSR

The unary design utilizes simple pipeline

architecture for placing the appropriate bit lines in time

(Figure 1). Because of the small number of total bit

lines required (generally around 30) and extensive

pipelined fan out to the individual comparators, adding

delay registers adds little area to the system design. The

new design takes the the general brute force matching

technique used by UCLA and Crete and moves the

character decoding to the first stage in the pipeline, and

reduces the overall size of the individual comparators

by one-eighth
[4]

. Each pipeline contains only the

characters required by the patterns for which the

pipeline is responsible. The length of each pipeline is

equal to the length of the longest pattern in the pipeline.

2.2 Regular expression NFA

There are two main approaches for turning regular

expressions into equivalent NFA's. One is by

Thompson, and the other one is by McNaughton and

Yamada[2]. Thompson's construction is a simple,

bottom-up method that processes the regular expression

and constructs NFA as it is parsed. For regular

expression R, the rules for constructing Thompson's

NFA MR that accepts LR are as follows: There are

exactly one initial and one final state in Thompson’s

NFA.

Another approach is based on Mc-Naughton and

Yamada[2]. In addition to an initial state, McNaughton

and Yamada's NFA has a distinct state for every

alphabet symbol occurrence in the regular expression.

All the edges in McNaughton and Yamada's machine

are labelled by alphabet symbols; all the incoming

edges of each state are labelled by the same symbol.

Let q1 and q2 be states in a McNaughton and

Yamada's NFA. There is a path from transition state q1

to transition state q2 in a Thompson's Machine spelling

a if and only if there is an edge labeled a from q1 to q2

in McNaughton and Yamada's corresponding machine.

McNaughton and Yamada's corresponding NFA for

(a|b)*abb is shown in Fig. 3

3. Our Contribution

our model, we first design the reverse of the regular

expression to be matched. For example, if the regular

expression (a+2+3*d) which is to be matched; the

system generates the reverse of the regular expression

which is (d3*2+a+). The actual string to be compared is

not reversed; it is only compared in a descending order

of index. Two processes start simultaneously.

Figure 4 NFA for regular expression a+2+3*d

The first process starts comparing the actual string

with the original regular expression. The second

process starts comparing the string with the reversed

regular expression.

Figure 5 Reverse NFA for the regex

At around mid-way through the string, both of the

process will stop matching as the whole string would

have been matched till then. As two processes will be

Figure 2 Pipelined Grid Architecture

Figure 3 Thompson’s NFA Equivalent to (a|b)*abb

Figure 1 Pipelined Grid Architecture

Figure 3 McNaughton and Yamada's NFA equivalent to
(a|b)*abbb

1021

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

running simultaneously matching the provided string,

the matching processes will be completed around half

of the time required. Now the significant decision is

regarding the selection of the midway point where the

two processes will stop matching. Our model proposes

one point for each process, so as to avoid a loss of

regular expression match at the mid-point. Let us

assume, the string to be matched is of length 100, the

regular expression is of length 6.Thus, the midpoint for

process 1 will be 53 and the midpoint for process 2 will

be 47. This window of 6 bytes length will ensure that

no regular expression is missed at the midpoint. If we

take one midpoint for example 50, then it could be

possible that a string of 6 bytes length residing at 48,

49, 50, 51, 52, 53 positions would be missed. The

proposed model for midpoint is shown in figure 6.

Figure 6 Window for midpoint determination

Our model would be using this technique to match a

large string with multiple regular expressions by

starting two processes simultaneously. In this type of

scenario, the model would exhibit better results.

Figure 7 Chart Showing the Experimental Results

4. Experimental Evaluation

We evaluated our model with set of data strings and

regular expressions for matching. In our simulation, we

have taken few assumptions such as we already

provided the second thread process with a reverse

string with half number of characters. We performed

our simulation using python language with the help of

python libraries such as “threading” and “re” for multi-

threading and regular expressions respectively. We

incorporated a laptop with the following specifications

 Intel core 2 duo 2.6 GHz

 4 GB RAM

 32-bit Windows 7 OS

 Python 2.7.3

 Net Beans IDE

We tested the above with four set of strings of

different lengths and respective regular expressions for

matching. For avoiding complexity the length of the

regular expression was fixed at six. For the calculation

of time required we used the time module and its clock

function. The results we got has been displayed in the

below figure-7. The graph clearly shows the difference

between the time required by our model is less than the

time required by the program normally. We believe that

the performance of the model can be enhanced by using

a computer with a better configuration. A computer

with more number of cores and more main memory

would surely give more performance, especially in the

case of multi-threading. We also believe our model can

be enhanced by using the concept of multi-processing

instead of multi-threading.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

60 100 180 400

Ti
m

e
 r

e
q

u
ir

e
d

 in
 s

e
co

n
d

s

String Length

Normal

Using our model

1022

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

5. Conclusions and future work
In this paper, we studied the existing techniques for

regular expression matching and proposed a model for

a faster approach. Our model uses the concept of multi-

threading to fasten the process of string matching. The

regular expression to be matched is reversed. One

process matches the string with the given regular

expression while the other process matches .The main

distinguishing factor of our model is the degree to

which the RE matchers are enforced to prune the search

time for large input data set. In real time applications

such as deep packet inspection, we need to search large

pattern sets. In such cases, the proposed model would

exhibit better results.

We believe that optimization in searching of regular

expression is an important and fertile area of research.

Numerous fields of application would be benefited

from the research. Although much research has not

been completed on the above said multi-threading

matching technique, there is scope for further research.

6 Acknowledgements

This work is supported by college of engineering

and technology. The authors would like to thank their

family and friends for their support. The authors would

also like thank all the faculties of Computer science

department of CET Bhubaneswar for their help.

7 References

[1] A Scalable Hybrid Regular Expression Pattern Matcher -

 James Moscola, Young H. Cho, John W. Lockwood

 Department of Computer Science and Engineering

 Washington University

[2] From Regular Expression to DFA’s Using Compressed

 NFA’s by Chia-Hsiang Chang.

[3] Huei Lee, Hardware Architecture for high performance

 Regular expression matching IEEE Transactions on

 Computers, VOL 58, JULY 2009

[4] A Compact Architecture for High-Throughput regular

 Expression Matching on FPGA by Yi-HUA E. Yang,

 Weirong. Jiang and Viktor K. Prasanna

[5] A Methodology for Synthesis of Efficient Intrusion

 Detection Systems on FPGAs by Zachary K.

 Baker and Viktor K. Prasanna.

1023

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

