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Abstract:- The determination of an ultimate pit limit of an open-

pit mine is an important part of the planning of any mine. This 

is a phase which is related to the pit optimisation. New tools to 

solve mathematical programming problems have emerged in 

recent times prompting researchers to revisit the 

determination of ultimate open pit limits. Application of these 

tools such as Python could result in considerable savings in the 

cost of technical computing for mining companies in this study, 

a proposed algorithm for Ford and Fulkerson model was 

developed and coded in Python programming environment to 

solve the ultimate pit problem and the results are compared to 

the Lerchs-Grossman algorithm. The research demonstrated 

that the Ford and Fulkerson model run in Python, can be 

effectively used to find an ultimate pit limit in 3-dimensions 

through 2-dimension cross-sections. The ultimate pit limits 

obtained using the Ford and Fulkerson algorithm programmed 

in Python found optimal pit design in record time. To validate 

the proposed Ford and Fulkerson model, a numerical result 

comparison was done against the best-known LG. The FFA 

determines the ultimate pit limit by finding the maximum net 

value from blocks extracted which represent the minimum 

cuts. This research provides a framework for running the Ford 

and Fulkerson Algorithm to the mining domain using Python 

along with a brief description of the method and its application 

to a real copper project to exemplify its use. The optimum pit 

values obtained from the FFA and the LG are USD 881 870 000 

and USD 880 210 100, respectively. These results  gave the 

adaptation  model with the regression of  99,8 % and the net 

maximum value of USD 891 949 000 compared to the FFA 

model using python Although the proposed Ford and 

Fulkerson algorithm demonstrated its efficiency and 

applicability to deal with the ultimate pit limits. 

Keywords: Ultimate pits, optimisation, maximum flow, Graph, 

Ford and Fulkerson 

INTRODUCTION 

The mining activities have high economic risks and the 

determination of the optimum ultimate pit limit of an ore 

body greatly affects the economic feasibility of an open-pit 

mine, many researchers proposed different algorithms and 

heuristic methods that maximize the economic value of a 

mine while satisfying operational and extraction sequence 

constraints. In open-pit mining, the long-term planning 

problem for the exploitation of the reserve is often divided 

into two major tasks; the first is the determination of the 

ultimate pit limit and the production scheduling (Epstein et 

al., 2012). Optimization techniques applied to the production 

scheduling problems are based on the use of operations 

research (OR), which have been introduced in the mining 

industry since the work of Lerchs and Grossmann in the 

early 1960s (Lerchs and Grossmann, 1965). Johnson (1968) 

developed exact algorithms to optimize the long-term 

production plan in open-pit mining. The optimal solution 

provided by these exact algorithms may maximize the 2 

objective functions but fail to define the mining extraction 

sequence of a large-scale mine whereby blocks must be 

mined according to an established time horizon. The mine 

production schedule optimization must comply with a set of 

physical, technical, and economic constraints (Khan and 

Niemann-Delius, 2015). This study focusses on the 

determination of ultimate contour limits of the pit using the 

maximum flow algorithm developed by Ford Fulkerson. In 

the last decades, there have been two major approaches to 

determining the final pit limit. The first approach is 

undiscounted profit maximization and the other is 

maximizing the NPV of the ultimate pit limit. For each 

approach, some methods and algorithms are presented. In 

the first approach, initially, the final pit outline to maximize 

undiscounted profit is determined. Then achievement of the 

highest net present value (NPV) is planned for the pit 

production scheduling. Heuristic algorithms such as the 

floating cone (Pana, 1965) and its improved methods 

(Wright, 1999) and Korobov (David, Dowd, & Korobov, 

1974) were presented for this purpose. The Lerchs-

Grossman (1965) algorithm (LG) based on graph theory and 

the network flow algorithm (Johnson & Barnes, 1988; 

Yegulalp & Arias, 1992) also determine the final pit through 

a mathematical approach. Of these, the LG method is the 

most widely used when designing the final pit limit. 

Currently, a variety of software programs are being used to 

solve the problem, each of which has challenges in terms of 

acquisition, learning and application, all of which require a 

high degree of mining knowledge, as well as vast experience 

and high-level skills in computer applications. As a result, 

existing mathematical methods for handling the mining 

problem that requires less dependence on software have 

been introduced and are being enhanced. (Meisam Saleki & 

Kakaie, 2019).  
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BACKGROUND AND FORD AND FULKERSON 

ALGORITHM 

 

ULTIMATE CONTOURS 

It is not so long ago that operations research has been used 

to solve the problems of planning operations in surface 

mines. One of the first problems which one tried to solve in 

this field was the determination of the ultimate contours of a 

pit operation. The ultimate contours of an open-pit mine 

represent the geometric contours of the mine after its 

operation or they represent the appearance of the mine at the 

end of its economic life. Optimal contours are those that 

maximize total profits regardless of time. This is a long-term 

planning problem and allows, among other things, to 

estimate the quantity of ore that it will be possible to extract 

from the deposit, to estimate the economic duration of the 

exploitation, to plan the size of the surface installations and 

the machinery, and to plan the capacity of production. 

Knowing the final contours also makes it possible to plan 

and organize short, medium, and long-term operating 

sequences that will maximize profits. 

Several people have tried to design an algorithm that would 

optimize the final contours of an open-pit mine. The 

heuristic methods were the first methods developed to 

determine the final contours of the pit operations. From 

heuristics developed for the problem of ultimate contours, 

those which use the moving cone method or, floating cones, 

are the best known and have been the most widely used in 

industry because of their simplicity both in terms of 

understanding and implementation. It was Pana, in 1965, 

who first proposed this method and it remained for a long 

time the effective tool of design for open pit mines. Up to 

everything recently, several authors have been interested in 

this method. The second type of heuristics is based on the 

concept of dynamic programming. These methods 

originated from the 2-D algorithm of Lerchs and Grossmann 

and were then developed to deal with the three-dimensional 

problem.  

In 1965 Lerchs and Grossmann were the first to present an 

optimal method for the problem of ultimate pit contours. 

Based initially on graph theory, Lerchs and Grossmann's 

algorithm was taken up first by Johnson (1968) then by 

Picard (1976) who demonstrated that we could model the 

problem as that of a maximum flow problem in a graph.  

Lerchs and Grossmann 3-D graph theory algorithm 

Lerchs and Grossmann developed the first optimal three-

dimensional method for determining the ultimate contours 

of an open-pit mine, this is the second part of their 1965 

article. The Lerchs and Grossmann 3D algorithm is 

separated into two parts. 

The first part is used to build the graph and the second part 

is used to calculate the maximum weight closure on the 

graph. During the first part, you build the initial graph by 

drawing oriented arcs between each of the nodes and the 9 

nodes which are above it. Suppose, the two-dimensional 

deposit presented in Figure 1: 

 

 

 

 

 

 

      

 

 

 

 

Each of the blocks in figure 1 becomes a node of the graph. 

Each node of the graph is associated with a value represented 

by the cost or the profit generated by the extraction of the 

corresponding block. We can associate with this deposit the 

graph of precedence then must connect all the nodes to an 

artificial node named S. Thus, a tree is formed where the 

artificial node s is the root of the tree. Figure 2 shows the 

initial tree thus created. 

The second part of the algorithm consists in finding the 

maximum closure on this graph. Even though Lerchs and 

Grossmann's algorithm has been proven for several decades 

now and is the benchmark algorithm from which all newly 

developed algorithms are ranked and judged, it was hardly 

ever used in the industry before the mid-1980s. The main 

reasons for this phenomenon were practicality, over years, 

however, it has been remodeled and modified frequently to 

make it more efficient, Stuart (L992), Zhao and Kim (1992). 

They have all, at some level, succeeded in overcoming 

certain limitations mentioned above such as incorporating 

variable slopes during calculations and reducing resolution 

times; with the advent of commercial software Whittle, the  

 

Lerchs and Grossmann method has become increasingly 

popular in the industry, from the mid-1980s until now, many 

years after the release of the original article in 1965. For a 

long time, the different methods developed over the years to 

determine the ultimate contours were not favored in the 

industry because of the implementation problems that they 

presented, such as their inability to take into account variable 

slopes for different parts of the pit. 

MAXIMUM FLOW ALGORITHM 

In 1965, when Lerchs and Grossmann proposed their 

algorithm, they specified that the problem could be dealt 

with in several different ways, either by using the dynamic 

programming, or using graph theory (maximum closure of a 

directed graph), either as a flow problem or as an analogy 

hydrostatic (project management problem). In 1968, as part 

of his doctoral thesis, Johnson was the first to recognize the 

relation between the problem of the ultimate contours and 

the maximum flow. In 1976, Picard demonstrated 

mathematically that the method presented by Lerchs and 

Grossmann, which consisted of finding the maximal closure 

Figure 1: Example of deposit in 2Dimension (E. Chanda, 2021) 
Figure 2: Graph and The initial tree graph 

representing the constraints of precedence 

between blocks (E. Chanda, 2018) 

 

 

 

 

 

 

Figure 2. 1: Graph representing the 
constraints of precedence between blocks (E. 
CHANDA,2021) 
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on a graph, was equivalent to finding a maximum flow on a 

graph adapted to the problem of contours ultimate. The new 

graph is obtained by adding a source node s and a node sink 

t. The source node is connected to all the nodes i which have 

a positive value by an arc oriented (s, i) of capacity equal to 

the value of the node. The sink node is connected to all nodes 

j which have a negative or zero value by an oriented arc (0, 

i) of capacity equal to the absolute value of the node. In this 

new graph, the arcs of precedence have an infinite capacity. 

Figure 3 presents the Picard graph constructed from the 

deposit presented in Figure 2 in the section on Lerchs and 

Grossmann 3D. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE  FORMULATION OF THE MAXFLOW 

ALGORITHM AND METHODOLOGY 

 

firstly we need to have the economic block value, The 

equations to compute the value of a block are given as 

follows (Kubra, 2019): 𝐸𝐵𝑉 = 𝑅(𝑃 − 𝑆)𝑔𝑡     (1) 

 𝑅 − 𝑀𝑐𝑡 − 𝑃𝑐𝑡)       for the ore blocks   (2)                                                                    

−𝑀𝑐𝑡      for waste bocks 

where R is revenue, P is price, S is selling cost, g is grade, t 

is the tonnage of the block, EBV is economic block value, 

MC is mining cost, and PC is processing cost. 

 

 

CONCEPTS OF THE MAXIMUM FLOW ALGORITHM 

FORD AND FULKERSON 

 

The ij blocks are the blocks that make up the economic block 

value for the Mutoshi deposit, and five primary sections can 

be explained as follows: the first step concerns the mineral 

resources modeling and calculation; the next step concerns 

block aggregation then the software surpac was used for 

providing the economic block model then translate the 

problem to optimized with max flow algorithm Ford and 

Fulkerson using python programming. To carry out the 

research of this work, two types of methodology, theory and 

practice. The theory part includes some very advanced 

theories and The practical part requires knowledge of the 

several tools and mining software 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flowchart of the proposed maxflow algorithm for solving the ultimate pit limit problem 

Figure 3: Graph for the calculation of ultimate contours with maximum flow formulation for Ford and Fulkerson Algorithm Chanda, 2019) 
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FORD AND FULKERSON ALGORITHM IN THE 

CONTEXT OF THE UPLO 

 

According to (Goldberg & Tarjan, 2014)The FF algorithm 

was developed to improve the augmenting paths work and 

proved to give better results experimentally when compared 

to other algorithms methods. With the augmenting paths, a 

new breath-first search is normally started from the source 

(s) to sink (t) paths once all the pre-examined paths are 

exhausted. This search in UPLO can be achieved by 

scanning the blocks (vertices) within the block model. Since 

it can be very costly to repeat the whole search process every 

time, the FF algorithm builds two search trees, where one 

starts from the source and the other from the sink. The 

algorithm also reuses these trees in their search instead of 

starting afresh, thus saving on time. The algorithm works by 

maintaining two search trees T and S to give a min-cut, 

which are rooted at the sink node (t) and the source node (s), 

The algorithm iterates three main steps:  

Growth step: this is the step where the tree grows by linking 

the active nodes in the tree to the free nodes whose edges are 

not saturated until an augmenting path is found. In UPLO, 

the blocks will be linked depending on the set of blocks that 

are required to be mined to pave the way for mining a certain 

ore block. This is achieved by linking the active nodes of the 

two sets of trees S and T. 

Augmentation step: this step enhances the augmenting 

paths found in the growth step by trying to push maximum 

flow through the edges such that some edges become 

saturated.  

Adoption step: with the creation of a forest of trees from the 

augmenting step, the adoption step restores the original 

setup of S and T trees. This is achieved by looking for new 

parents with non-saturated edges for the visit from the same 

tree they have come from. If the visited do not get new valid 

parents, they become free nodes. This step ends when all the 

visited cease to exist and the original S and T trees are left. 

Once the adoption step ends, the algorithm starts again at the 

growth step until the time when all the active nodes phase-

out, thus achieving a maximum flow. Then the min-cut will 

be created with all saturated nodes and that will be the 

maximum closure. 
APPLICATION OF MAX FLOW ALGORITHM FOR THE 

CASE STUDY 

Formulation of the network max-flow model for Mutoshi 

deposit 

Let 𝐺 = (𝑉, 𝐴) be a direct graph network with 𝑛 = | 𝑉 | the 

number of nodes and with 𝑚 = | 𝑉 | the number of arcs. Let 

with (𝑢, 𝑣) ∈  A  be a direct arc from 𝑢 to 𝑣 , then 𝐶𝑢𝑣  and 

𝑓𝑢𝑣  represents the arc capacity (non-negative real number) 

and arc flow, respectively. By setting a lower bound capacity 

to zero, a Pseudoflow  f assigns to each arc (𝑢, 𝑣)  a flow 𝑓𝑢𝑣  

so that 0 ≤ 𝑓𝑢𝑣  ≤ 𝐶𝑢𝑣 . An 𝑢, 𝑣 -graph 𝐺𝑠𝑡  = (𝑉𝑠𝑡 , 𝐴𝑠𝑡 ), 

corresponds to an extension of 𝐺 with two additional nodes: 

a source 𝑠 and a sink 𝑡, 𝑉𝑠𝑡 = 𝑉, 𝑈{𝑠, 𝑡}. The set of arcs 𝐴𝑠𝑡  

now includes source-to-node arcs A(s) and node-to-sink arcs 

A(t), 𝐴𝑠𝑡  = A ∪ A(s) ∪ A(t). A closure graph is an s,t-graph 

whose arcs with finite capacities are only the arcs adjacent 

to the sources and sink nodes, residual graph, inflow(u), 

outflow(u), and excess, are required to provide the step-by-

step operation of the generic Pseudoflow algorithm that 

maximizes the flow. (Sebastian Avalos, 2020), so the set of 

nodes involved in the maximum flow solution corresponds 

to the blocks in the resulting ultimate pit limit. (Bai, 2017). 

Figure 5 illustrates all details about the formulation network 

of the case study deposit  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.: Graph representing the Mutoshi  block model and block dependencies (cross section 3) 
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Assuming a maximum slope angle of 45°, the active nodes 

link the free neighboring nodes, which in this case are the 

waste blocks in blue colored that have to be mined for the 

ore block to be mined. The growth continues until the two 

trees join, as shown in Figure 6. Since the Ford Fulkerson 

maximum flow algorithm is an augmenting path method, it 

makes sure that the flow-conservation constraints and the 

capacity constraints are adhered to, such that: (Akisa David 

Mwangi, 2020), Chanda, 2018) 

Adjacency Matrix for Mutoshi deposit in 2 Dimensions 

 

The adjacency matrix of a graph 𝐺 = (𝑉, 𝐸)   is an n × n 

matrix    𝐴𝐺 =   (𝑎𝑖𝑗 ), where 𝑉 = { 𝑣1 , 𝑣2 , , , 𝑣𝑛 }   is the 

vertex set, 𝐸  is the edge set of G and  𝑎𝑖𝑗 is the number of 

edges between the vertices  𝑣𝑖  and 𝑣𝑗  . In the adjacency 

matrix of a directed graph,  𝑎𝑖𝑗 equals the number of arcs 

from the vertex 𝑣𝑖  to  𝑣𝑗  in the current case n = 14 and 13 

Table 1: Description of the Mutoshi Adjacency matrix for one section 

  𝐴𝐺  Mutoshi Adjacency matrix on one  cross-section 

N 182 blocks  from with source node 0 and sink node 183 

𝑉 = { 𝑣1 , 𝑣2 , , , 𝑣𝑛 } 184 vertices represent the blocks  

  𝑎𝑖𝑗  662 arcs, 480 arcs (internals)  and 182 arcs (externals) 

𝐸  662 edges 

𝑛 (rows)=  13  vertices                   𝑛 (columns)=  14   vertices  

 ∑ 𝑛(𝑣)
𝑛

∗  14(columns) = 168 arcs     ∑ 𝑛(𝑣)
𝑛

∗  13(rows) = 312 arcs     ∑ (𝐸𝑣)
𝑛

∗  1 = 480 arcs (externals) 

 Development of the model 

We begin by importing four python packages (or libraries): 

NumPy; NetworkX; pseudoflow2 and time. the full code is 

given in the figure below 

 
# Python program for finding min-cut which represents the ultimate pit limit for the open pit in 2D in the given graph which is a cross-section 

from 3D 

from collections import defaultdict  

class Graph: 

    def __init__(self, graph): 

        self.graph = graph  # residual graph 

        self.org_graph = [i[:] for i in graph] 

        self.ROW = len(graph) 

        self.COL = len(graph[0]) 

 

    def BFS(self, s, t, parent): 

        visited = [False] * (self.ROW) 

        queue = [] 

        queue.append(s) 

        visited[s] = True 

 

        while queue: 

            u = queue.pop(0) 

Figure 6: Graph showing the augmenting paths from source (s) to sink (t). 
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            for ind, val in enumerate(self.graph[u]): 

                if visited[ind] == False and val > 0: 

                    queue.append(ind) 

                    visited[ind] = True 

                    parent[ind] = u  

        return True if visited[t] else False 

 

    def minCut(self, source, sink): 

        parent = [-1] * (self.ROW) 

        max_flow = 0   

 

            while self.BFS(source, sink, parent): 

            path_flow = float("Inf") 

            s = sink 

 

            while (s != source): 

                path_flow = min(path_flow, self.graph[parent[s]][s]) 

                s = parent[s] 

            max_flow += path_flow 

            v = sink 

            while (v != source): 

                u = parent[v] 

                self.graph[u][v] -= path_flow 

                self.graph[v][u] += path_flow 

                v = parent[v] 

 

        for i in range(self.ROW): 

            for j in range(self.COL): 

                if self.graph[i][j] == 0 and self.org_graph[i][j] > 0: 

                    print(str(i) + " - " + str(j)) 

graph = [[adjacency matrix]] 

g = Graph(graph) 

source = 0; sink = N 

g.minCut(source, sink) 

 

# This code is contributed by pathie Musenge for the mining domain 

 

 

Following are steps to print all edges of the minimum cut: 

Run the Ford-Fulkerson algorithm and consider the 

final residual graph; Find the set of vertices that are 

reachable from the source in the residual graph; All edges 

which are from a reachable vertex to a non-reachable vertex 

are minimum cut edges. Print all such edges. Solution of the 

max-flow model for Mutoshi deposit using Python Program 

The maximum pit value can be realized by separating the 

trees S and T using the invalid parts created by the saturated  

 

 

 

edges linking the two trees. The saturated edges from the 

source node to the ore blocks are normally broken to avoid 

the support of the ore blocks to the overlying waste blocks, 

the other saturated edges from the waste blocks to the sink 

node are also broken to avoid the support of these waste 

blocks from the underlying ore blocks. This also makes sure 

that there are no outgoing arcs from the maximum closure. 

In this case, the ultimate pit contains the blocks in table 2 

with a maximum close value of USD 3203 and his ultimate 

pit value as shown in Figure 8 

0 – 85 72 – 183 117 – 183 135 – 183 151 – 183 167 – 183 

0 – 86 75 – 183 118 – 183 136 – 183 152 – 183 169 – 183 

0 – 87 89 – 183 119 – 183 137 – 183 155 – 183 170 – 183 
0 – 88 92 – 183 120 – 183 138 – 183 156 – 183 171 – 183 

0 – 90 99 – 183 121 – 183 141 – 183 157 – 183 172 – 183 

0 – 86 100 – 183 122 – 183 142 – 183 158 – 183 173 – 183 
0 – 87 101 – 183 127 – 183 143 – 183 159 – 183 174 – 183 

0 – 88 102 – 183 128 – 183 144 – 183 160 – 183 175 – 183 

0 – 90 103 – 183 129 – 183 145 – 183 161 – 183 176 – 183 
0 – 104 106 – 183 130 – 183 146 – 183 162 – 183 177 – 183 

0 – 105 113 – 183 131 – 183 147 – 183 163 – 183 178 – 183 

0 – 107 114 – 183 132 – 183 148 – 183 164 – 183 179 – 183 
0 – 123 115 – 183 133 – 183 149 – 183 165 – 183 180 – 183 

61 – 183 116 – 183 134 – 183 150 – 183 166 – 183 181 – 183 

     182 – 183 

 

Figure 7:  Proposed maximum flow algorithm of the Ford and Fulkerson  algorithm 

Figure 5. 1: Ultimate pit limit using Maxflow algorithm Ford and Fulkerson on section 3 
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Ultimate pit limits for each 2-dimensional section (13 

cross-sections) 

To demonstrate the computation speed of the maximum flow 

algorithm, a series testing of 13 cross-sections through block 

models was used. The 45-degree slope angle is adopted for 

the block model. The number of arcs created for this slope 

setting and the economic value is listed in Table 2  Note that, 

the actual number of blocks and arcs used in the optimization 

is called active blocks and active arcs, in f, the active blocks 

are colored in red, blue, orange and yellow. (Active blocks 

represent the blocks that contain the ultimate pit limits in 

each section, and all the precedent blocks linked to the active 

blocks need to be removed to access the ore. 

 

FINAL ULTIMATE PIT LIMITS FOR THE DEPOSIT

 

The limit of the final pit is made up of 13 cross-sections 

which were mineralized, and of these sections, we have a set 

of blocks which represents the min-cut found during 

programming with the python application with their 

respective limits and the figure 10

 

is the Mutoshi ultimate 

pit limits, the pit representation of all the sections in 3 faces 

is and the construction of the pit shell was carried out in 

windows excel, In figure 10:

 

 

 

•
 

the blocks in blue, yellow, and orange blocks 

represent the active blocks which are joined by the 

active 
 

•
 

the blocks in black represent the set of blocks that 

constitute the blocks that must not be mined and 

will remain in our mines
 

•
 

the blocks in blue represent the set of all the 

wastes blocks that continue within the limit to be 

exploited and those in yellow color are the ore 

blocks also contained within the limit of the 

blocks to be mined
 

•
 

all the blocks in red represent the ultimate limit 

and its blocks will also be extracted
 

 

 
 

 

COMPARISON OF MAX-FLOW RESULTS WITH LERCHS 

AND GROSSMANN

 

Study case

 

Ultimate pit limits using the Lerchs and 

Grossmann algorithm concept

 

 

The essence of the LG algorithm is to split the economic 

block model into parallel vertical sections or 2D space, then 

determine the contour of the pit on each section that yields 

the maximum profit. The general configuration of the pit 

contour on a cross-section (2D) consists of three sides: two 

walls inclined at a certain slope angle and the bottom level 

of the pit. Analytically, the LG seeks to maximize the 

objective function Z shown in Equation 6.1 to design an 

optimum pit: (musema, 2020)     

 

       

 

 

 

 

 

 

The first step is to 

compute the cumulative profits 𝑀𝑖𝑗  realized after the 

extraction of a single column of blocks having at its base the 

block 𝑥𝑖𝑗

 
. The calculation of 𝑀𝑖𝑗

 
within a column is 

independent of other
 
columns as shown in Equation 3  where 

the index 𝑙
 
identifies all blocks involved.

 

 

 

 

𝑃𝑖𝑗   =   𝑀𝑖𝑗  + max{ 𝑐𝑗+1,𝑗−1}     
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Figure 9: Maximum pit value for all 13 cross sections

 

Figure 10: a representation of Mutoshi ultimate
 
pit limit using maximum flow 

algorithm
 

Figure 8: Ultimate pit limit using Maxflow algorithm Ford and Fulkerson on 

section 3
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 The process continues until the last column generating 

overall cumulative values 𝑃𝑖𝑗

 

on each block. The optimum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 pit contour on the section is that which yields the maximum 

cumulative value and in the current case, the net value for 

the cross-section is USD 3175.

 

 
Figure 11: ultimate pit limit using LG for

 

Mutoshi block

 

model cross-section 3

 
COMPARISON OF OPTIMAL PIT VALUE

 The ultimate pit limit for this deposit was calculated using 

the FFA and LG. The FFA maximum flow algorithm gave a 

maximum pit value of USD 881 780 000 in 25s with 1261 

as some active blocks. The LG gave the maximum pit value 

of USD 880 211

 

but still with a long time of 45s with 1443 

number of active blocks, table 6.3 gave the percentage 

square around 99,9 This, therefore, shows that the FFA 

maximum flow can be applied in the mining industry 

ultimate pit optimization since the results shown the on 

others sections the same values with LG model, which is 

already being applied. Table 5.13 gives a summary of the 

comparison of maximum flow algorithm Results for Ford 

and Fulkerson and Lechrs and Grossmann. The two final 

ultimate pits obtained from FFA and LG for Mutoshi deposit 

for this deposit are shown in Fgure 12.

 Table 5: Introduction of a dummy row on a cross-section block model of 𝑀ij

 

values

 
Comparison 

 

 

Sections

 

Maxflow FF maximum pit value

 

LG maximum pit  value

 sec3

 

3203

 

3175

 sec4

 

11288

 

11301

 sec5

 

12218

 

12242.4

 
sec6

 

13828

 

13852

 sec7

 

10938

 

10920.5

 sec8

 

12681

 

12177.2

 sec9

 

5873

 

5931.4

 sec10

 

739

 

814.08

 sec11

 

2607

 

2606.9

 
sec12

 

6361

 

6334.01

 sec13

 

6270

 

6256.367

 sec14

 

1696

 

1933.4

 sec15

 

476

 

476.8

 Total value

 

88178

 

88021.057

 Active blocks

 

1261

 

1443

 
Total time /seconds

 

25

 

45

 Difference between the total amount

 
 

156.947
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-366
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0

 
0

 

-215
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102

 

1183

 

-414

 

933

 

1763

 

-367

 

-156

 

-392

 

-304

 

-448

 

-422

 

-380

 

0

 
0

 

-237

 

-16

 

61

 

1142

 

-455

 

892

 

1725

 

-402

 

-190

 

-427

 

-333

 

-471

 

-444

 

-402

 

0

 
0

 

-259

 

-38

 

21

 

1101

 

-497

 

851

 

1688

 

-436

 

-221

 

-453

 

-355

 

-493

 

-466

 

-424

 

0

 

Table 
 

1: Introduction of a dummy row on a cross-section block model of 𝑀ij

 
values
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Table 6: Table regression statistics 

 

 

 

 

 
Figure13: comparison maximum pit value for FFA and LG  

COMPARISON OF MODEL PERFORMANCE 

The coefficient of determination (R-squared) was used. R-

squared shows how well the regression model fits the 

observed data, the correlation coefficient interprets the R 

values as 0 < R < 30% implies weak correlation, 30% < R < 

70% implies moderate correlation and R > 70% implies 

strong correlation. (Amankwah, 2011) figure 13 compare 

results between FFA and LG  using regression analysis 

 

                                                                                                                Figure 15: predicted model and FFA model 
Figure 14: correlation between FFA model and LG model 

Application of the model to Maxflow algorithm Ford and Fulkerson, the model found y = 1.0143x - 84.824  

                                  

SUMMARY OUTPUT     

Regression Statistics 

Multiple R 0.999537 

R Square 0.999075 

Adjusted R Square 0.99899 

Standard Error 154.9037 

Observations 13 
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Table 7:  results FFA and regression results 

data  

sections Maxflow Ford Fulkerson Algorithm Model found 

1 Sec3 3203 3135.5785 

2 Sec4 11288 11377.7803 

3 Sec5 12218 12332.64232 

4 Sec6 13828 13965.2596 

5 Sec7 10938 10991.83915 

6 Sec8 12681 12266.50996 

7 Sec9 5873 5931.39502 

8 Sec10 739 740.897344 

9 Sec11 2607 2559.35467 

10 Sec12 6361 6339.762343 

11 Sec13 6270 6261.009048 

12 Sec14 1696 1876.22362 

13 Sec15 476 398.79424 

Total value 88178 89194.93412 

 
CONCLUSIONS AND RECOMMENDATIONS 

 

Ultimate pit limit optimization (UPLO), playing a major role 

in the mining industry and algorithms for solving UPLO, 

have been developed and improved by various researchers 

since the 1960s. This research project aimed at finding the 

ultimate pit limit for Mutoshi deposit, a Ford and Fulkerson 

algorithm model was developed and coded in Python 

programming language to be run on a block model through 

13 cross-sections in two- dimensions. The application of the 

proposed Ford and Fulkerson algorithm in this research 

determined the best results and applicability in the mining 

domain compared to results obtained using Lerchs and 

Grossmann with the same data set. However,  

The implementation of the Ford and Fulkerson algorithm to 

solve the ultimate pit limits problem in an open-pit mine has 

shown encouraging results and its applicability compared to 

Lerchs and Grossmann when applied to the case study. It 

was demonstrated that the Ford and Fulkerson Algorithm fits 

well in solving the ultimate pit limits problem as those two 

methods consider Lerchs and  

Grossman as the base model already found and proved 

through several authors as the first mathematical method to 

solve the ultimate pit limits problem. From two methods we 

found a model for validation and compare the results from 

this one the applicability of the Ford and Fulkerson 

algorithm has been proved to be used in the mining domain. 

 

 

To test and validate the proposed FFA model, this study used 

also LG which is a known method for solving the ultimate 

pit limits problem. The deposit has 3,304 blocks, with 60 in 

X, 60 in Y, and 20 in the Z direction as user blocks, the FFA 

used 2366 as blocks and LG used 2366 Blocks. When 

applied the FF model, the FFA provided an ultimate pit limit 

with 4424 arcs and 1261 active blocks,

 

and the results in 

excel provide 1443 active blocks for LG. 
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