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Abstract–The systems which react automatically to events 

must be capable of handling abundant load of incoming events 

the problem resides in the designing of the system is handling 

events associated with uncertainty and materializing the events 

by the occurrence of the relevant events at active functionality 

in higher rate of accuracy. Wide spread paradigm for such 

materializing is Complex Event Processing, a rule based 

paradigm, the rule definition is purely depended on the domain 

experts, the domain experts have to provide the necessary event 

for the processing and those rules will be processing the 

incoming events and pass out the input to the system. While it 

is reasonable to expect that domain experts will be able to 

provide partial rules specification, providing all the required 

details is a hard task, even for domain experts [2]. Moreover, in 

many active systems, rules may change over time, due to the 

dynamic nature of the domain. Such changes complicate even 

further the specification task, as the expert must constantly 

update the rules. To lower the burden of the domain expert to 

constantly update the rule we device this mechanism of both 

defining of rules at the initial stage and update the rule over the 

time. It combines both the information provided by the domain 

expert with machine learning technique it is aimed at improving 

the accuracy of event specification and materialization 
 

Index terms-Complex event processing, rule-based reasoning with uncertain 

information, prediction correction paradigm. 

 

1. INTRODUCTION 

The complex event processing has gained interest many area of 

engineering scientific and public beneficiary security and so on 

applications all these areas of application requires sophisticated 

mechanism for manage events and materialize new events from 

the existing ones, event materialization involves process like 

sampling and selectability these are represented using rules[1]. 

The rules that has to be implemented for the selecting and 

sampling of the events must be implemented by the domain 

experts which is a tedious work, once the rule implemented will 

not remain constant since the system has an changing nature of  

Operation, so the rules must also be changed according to the 

changes occur in the system and the problem that is involved in  

This process is identifying the parameter for the rules and 

implementing the rules as soon as possible in order to avoid the 

loss in data 

 

 

2. PROBLEM DEFINITION 

The problems concerned with uncertainty event derivation are,  

In many cases such derivation is carried out based on a set of 

rules [7]. The uncertainty event derivation is made to be in a 

ruined position due to the in ability to relate the actual 

occurrences of events continuously, to which the system must 

respond, and the ability of event-driven systems to accurately 

generate events. This results in uncertainty and may be caused 

by the defective event sources. The next challenging task is to 

determine with confidence whether the event has occurred or 

not with the provided source of information is highly 

recommended for the need to enable timely response to events 

[6]. Event derivation should also scale for a large number of 

loads of event. Assigning rules for processing events under 

large scale of events input from the sources and processing all 

the events with the rules to derive the new events will not be an 

efficient way of derivation. This will cause a gap in the 

derivation of events and materialization of events. To avoid this 

back log an effective frame work is been utilized for event 

derivation and the rule associated with the processing of events 

has to be implemented by the domain experts, such an 

monotonous work cannot be carried out efficiently. In order to 

avoid the inefficient implementation of the rules, and 

unproductive derivation of the events once the rule 

implemented can be tuned by machine learning techniques [2] 

and can be updated according to the change of course of the 

system. We had devised an intelligent frame work that will 

efficiently process the uncertain events and tune the rule 

parameter assigned to process the event 

 

3. RELATED WORK 

This frame work gets uncertain events as inputs from the 

systems connected to the network that is processed over a set of 

rules contained in the server to determine that whether the 

event is eligible for derivation of other events or not. The event 

derivation is based on the set of events that are predicted for the 

derivation after processing through the set of rules the newly 

derived event’s probability is computed through the set of 

probability spaces defined over the time t since the probability 

space of the derived event varies for time to time. The sampling 

function is implemented to generate a Bayesian network that is 

used to predict a probability of the events efficiently and 

approximate the occurrence of the event and selectability 

technique is used in the rule parameter to select which events 

are eligible for the derivation of the events. The rule implied in 
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the selectability technique often tends to change first of all the 

implementation of those rules itself a painstaking task for the 

domain experts. The frame work we suggest will be tuning the 

rule parameters defined and update the rule parameter in the 

due course of changes in the system this is achieved by using 

machine learning technique (a simple statistical learning 

technique) implemented through a prediction - correction 

paradigm the rule prediction stage tunes the rule by utilizing 

the intelligence gathered through the process of learning about 

the rule without any human assistance and the rule correction 

process will change the tuned rule with the intelligence 

provided by the domain expert. 

 

3.1 EVENT COMPOSITION 

Various systems enabling event composition have been 

defined. Some of these are designed specifically for active 

databases. Others are general-purpose event composition 

languages. All existing languages enable deterministic 

inference of events, based on a set of rules. Each rule describes 

a complex sequential predicate or function, based on which 

inference is carried out .A major shortcoming of all existing 

specification languages is that they can reason only about 

deterministic knowledge regarding the relations between 

events. In addition, none of the existing systems are designed to 

handle uncertainty in a general and formal manner. 

 

3.2 MECHANISMS FOR PROBABLISTIC REASONING 

The commonly used approach for quantifying probabilities is 

Bayesian networks. However, Bayesian networks are only 

adequate for representing true or false probabilistic 

relationships between units. In addition, standard Bayesian 

networks cannot clearly model sequential relationships. To 

overcome these limitations, several extensions to Bayesian 

networks have been defined, including Dynamic Belief 

Networks, Time Nets, Modifiable Sequential Belief Networks, 

and Sequential Nodes Bayesian Networks. Although these 

extensions are more expressive than classical Bayesian 

networks, they nonetheless lack the expressive power of First-

order logic. In addition, some of these extensions allow more 

expressive power at the expense of efficient calculation. 

Another formal approach to reasoning about probabilities 

involves probabilistic logics. These enable assigning 

probabilities to statements in first-order logic, as well as 

inferring new statements based on some axiomatic system. 

However, they are less suitable as mechanisms for the 

calculation of probabilities in a given probability space. This 

approach combines the representational strength of 

probabilistic logics with the computational advantages of 

Bayesian networks. In this paradigm, separate models exist for 

probabilistic knowledge specification and probabilistic 

inference – i.e., probabilistic knowledge is represented in some 

knowledge model, whenever an inference must be carried out, 

an inference model is constructed based on this knowledge. In 

this work, we have chosen an approach very similar to this 

paradigm: Knowledge is represented as probabilistic rules, 

while probability calculation is carried out by constructing a 

Bayesian network based inference model. 

 

 

 

3.3 UNCERTAINTY WITH EVENTS 

Uncertainty is defined as the lack of certainty a state having 

limited knowledge where it is impossible to exactly define the 

existing state a future outcome or more than one possible 

outcome. The uncertainty in event processing system is caused 

by unreliable source or faulty source of information these 

results in the gap between the actual occurrences of explicit 

events. The above situation is the reason for the hampering of 

event derivation by the system based on the gap or lack in 

tracking input events. Two main aspects that must be 

considered while developing an uncertain event processing 

system are derivation should scale under heavy loads of input 

events and the probabilities associated with the derived events 

must be captured and correctly represented. One of the best 

ways to handle  

3.4 INTRUSION DETECTION 

[11] Describes a general model of IDS. The information system 

being protected (application, computer and/or network) is 

subject to a usage configuration or policy that describes 

legitimate actions of each entity (user, host or service) profile. 

Audit data describing entity actions or system states are 

generated (either systematically or triggered by the IDS) and 

then analyzed by the IDS, which evaluates the probability of 

these states or actions being related to an intrusion. Data 

processed by the IDS may be a sequence of commands 

executed by a user, a sequence of system calls launched by an 

application (for example a Web client, network packets, etc.) 

Finally, the IDS can trigger some countermeasures to eliminate 

attack cause/effect, whenever an intrusion is detected. Intrusion 

detection technique is separated into signature-based and 

anomaly-based detection. The former must possess an attack 

description that can be matched to sensed attack manifestations. 

This can be as simple as a specific pattern that matches a 

portion of a network packet or as complex as a state machine or 

neural network description that maps multiple sensor outputs to 

idea attack representations. If an appropriate idea can be found, 

signature-based systems can identify attacks that are abstractly 

equivalent to known patterns. Signatures that are too specific 

will miss minor variations on a known attack, while those that 

are too general can generate large numbers of false alarms. 

Such systems are inherently unable to detect truly novel attacks 

and suffer from a high rate of false alarms when signatures 

match both intrusive and non-intrusive sensor outputs. 

Anomaly-based detection equate unusual or abnormal with 

intrusions. Given a complete characterization of a noise 

distribution, an anomaly detector recognizes as intrusion an 

observation that does not appear to be invalid data alone. Such 

a mechanism needs to be trained on those unwanted data and 

has difficulty tracking natural changes in the noise distribution. 

These changes can cause false alarms while intrusive activities 

that appear to be normal may cause missed detection. Signature 

- based detection is more natural for rule representation, its 

sensitivity to changes helps to seek a rule representation for 

anomaly-based detection, a more challenging task. In this work 

we define rules based on the probability distribution function of 

explicit events features. By that, we decrease the role of domain 

experts in the rules formulation process to recognition of 

impacting factors, letting the system self-tune rule parameters. 
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4. MODEL 

An event is actually an occurrence or happening that is 

significant (falls within a domain of discourse)and atomic 

(either may occur or not).based on the idea given in [1] We 

differentiate events two types they are Explicit Events these 

events are signaled by external sources or the events that occurs 

outside the system e.g. signal got from the sensors to a system, 

and Implicit Events these events doesn’t have any direct 

signaling but they are yet to be derived by the system based on 

the events that are outside and related to the system. A discrete 

model of time is used in this system that has some time points 

that are used to reference the events occurrences. Let (t1, t2…) 

be a sequence of time point the high level of data contained in 

this discrete time intervals depend upon the application.  

 

4.1 REPRESENTATION OF EVENTS 

Events are represented in the system by associating the events 

with data; events share some common data types with them, 

data types like occurrence of time are common for all events 

but data type associated with the event are specific. Attributes  

is the name coined for the terms associated with the events. The 

event is recorded with the Event Instance Data (EID) Events 

with uncertainty can be represented using a single tuple of 

values <val1, val2…valn> but when an event is with uncertainty 

it should be represented with several tuples and one of those 

tuples must have the probability of occurrence the event, and 

other attributes of the events. There is a probability associated 

with the events it is the complementary probability which gives 

information that the event had occurred or not. Due to the close 

world representation of the events the event will be considered 

as not occurred unless it is represented explicitly by its Event 

Instance Data. An event history is denoted by t1h
t2

 represents 

the set of all events as well as their associated data fall within 

the time t1 to t2. And the system event history is the set of all 

the events occurred with the Event Instance Data which has 

occurred in the entire system it is denoted by t1H
t2

 

 

4.2 RULES 

Rules represent information on event relationships each rule 

serves as a template and can be applied at a given time t. to 

event histories that are known at time t. the result of applying a 

rule to a specific event history may serve for the inference of, at 

most a single event. A rule r is given in the form <selr
n
, 

patternr
n
 ,eventTyper, mappingExpressionsr , probr>  

where, 

selr
n
 is a deterministic predicate returning a subset of an event 

history of size less than or equal to n (for some integer n). 

patternr
n 

is a (possibly complex sequential) predicate of n over 

event instances (note that this is the same in appearing in selr
n
 

eventTyper is the type of event inferred by this rule. 

mappingExpressionsr is a set of functions mapping the attribute 

values of the events that triggered this rule to the attribute 

values of the inferred event. 

 

probr ∈ [0,1] is the is the probability of inferring the event by 

the rule. The predicates defined by selr
n 
and  patternr

n
are  

deterministic, as are the functions mappingExpressionsr 

therefore, the only uncertainty present in the rule is represented  

by the quantity probr Indeed, many deterministic composite 

event languages can be viewed as defining a set ofrules R such 

that each rule r∈R is of the form <selr
n
, patternr

n
 , eventTyper, 

mappingExpressionsr , probr> 

 

4.3 SYSTEM STATE AND FEEDBACK 

It may seems easy to define the rule parameters by one to 

specify but it is difficult to define the exact parameters for the 

rule therefore the system is designed actually for the purpose of 

automating the process of parameter specification.  The set of 

all rules is collectively defined to be the system state at the time 

interval if given a time interval Tk = [ti
k
,.… tj

k
] and the n rule 

parameters at time interval Tkas Xk belongs to R
n
 the system the 

devised system updates the rule in two stages in two ways 

namely rule parameter prediction and rule parameter update in 

the former stage the rule parameters are updated without any 

domain expert supervision and it is based upon the previous 

EID’s that are recorded before any changes in the rule and the 

also with the intelligence of how the parameters may change 

over the time as well as on the constantly updated history h of 

explicit and materialized events. In the later the updated rule is 

tuned by the domain expert supervision i.e. feed back by the 

domain experts the feedback is of two types they are direct 

feedback and indirect feedbackDirect feedback involves 

changes to the system state while indirect feedback provides an 

assessment on the correctness of the estimated event history h 

for example an direct feedback may be actual minimal packet 

length indicating an network attack inferred by the system and 

indirect feedback may be making an event e in h as non exist 

ant or by suggesting an event occurrence at time t so that e is 

not in h 

5. RULE TUNING MECHANISM 

Rule Tuning mechanism involves two stages they are rule 

parameter prediction and rule parameter correction the forms 

works based on the constantly updated history of materialized 

events and allow the inference of complex event using the 

predicted parameter values is based on expert feedback of 

actual occurrence of predicted events and the recently 

materialized events allowing update to rule parameter in 

preparation for the next prediction stage. 

Rule Rule Purpose Input 

Events 

Input events Output events 

r1src_bytesRule Variance in level of 

packet size from 

source to destination 

E0 Score=C*prob(E1)*weight(E1) E1 variance of src_bytes, 

Features = {score} 

r2 dst_bytesRule Variance in level of 

size from destination 

to source 

E0 Score=C*prob(E2)*weight(E2) E2 variance of dst_bytes 

attributes = {score} 

r3serror_rateRule Variance in level of 

connections that have 

E0 Score=C*prob(E4)*weight(E4) E3 variance of srv_ratettribute 

features = {score} 
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“SYN” errors 

r4srvrateRule Variance in 

percentage of service 

to different hosts 

E0 Score=C*prob(E5)*weight(E5) E4 variance in srv_rate attribute 

features = {score} 

r5 if attackRule Attack detection rule E0, 

E1,E2,E

3,E4 

According to algorithm 1 E5 attack, features = {score, 

logged_in, if_attack} 

Table 1: inferred events and rule logic 

 

 
 

Figure 1: a rule tree example 

 

Example1. An Intrusion Detection System (IDS) receives 

explicit events about new service connections, recognizing 

which of these connections are intrusion attempts. The 

inference mechanism of this IDS is defined as a rule tree, as 

illustrated in Figure 1 [2]. Rectangles represent events and 

ovals represent rules. Each of the rules r1, r2, r3, r4is aimed at, 

first, analyzing a feature of an explicit event and, second 

,inferring a new feature anomaly event defining the extent to 

which this connection session attribute is considered to be 

anomalous. The inference logic of these rules is as follows: 

 Rule r1, srcBytesRule, infers event of type E1, 

representing the variance in level of the packet length 

received from the source, based on the learned normal 

distribution parameters. 

 Rule r2, dstBytesRule, is similar to r1 and infers event 

of type E2, representing the anomaly level of the 

packet length received from the destination user, based 

on the dst-bytes attribute of the explicit event E0. 

 rule r3 , serrorRateRule, based on the serror Rate 

explicit event attribute, infers event of type E3 , 

representing the anomaly level of percentage of 

connections within a 3-minute time window that have 

“SYN" errors. 

 Rule r4 , based on the srvRate explicit event attribute, 

infers event of type E4 representing the anomaly level 

of percentage of different open connections within a 

3minute time window. 

Rule r5 analyzes the inferred attribute anomaly events of types 

E1, E2, E3E4, inferring the integrated anomaly event(type E5). 

The rule parameter, a threshold of an integrated anomaly level, 

is learned using Algorithm 1. Table 1 defines rule parameters 

for each explicit event. 

 
 

5.1 PREDICTION CORRECTION PARADIGM 

The prediction process studies the rule implemented in the 

system and it tunes the rule based upon the history of events 

derived based on the recorded Event Instance Data. The 

prediction process involves the statistical estimator (kalman 

filter) that learns about the rule and the machine learning 

technique tunes the rule without any domain expert supervision 

The correction paradigm is used to verify the tuned rule with 

the intelligence provided by the domain expert and the rule will 

be tune according to the feedback again. The entire process is 

based upon the parameter defined by the domain expert to tune 

and update the rule.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Prediction Correction Paradigm 

The prediction correction process working mechanism is been 

described in figure 2 this paper make the following contribution 

 We imply an simple yet powerful mechanism to 

efficiently process uncertain events in rule based 

system 

 We present a mechanism to implement the parameters 

to the Rules in the rule based system automatically 

with an intelligent technique, combining knowledge 

possessed by the domain expert. 

 A simple model is presented for rule parameter 

determination and updating with the combination of 

Algorithm 1 infrence algorithm for rule r5

1. if attack ← false

2. total score ← calculateScoresSum(E1,E2,E3,E4)

3. if (loggedIn ˄ totalScore > totalScore1) then

4. if attack ← true

5. end if

6. if (⌐loggedIn ˄ totalScore > totalScore2) then

7. if attack ← true

8. end if

9. return if Attack

Rule parameter 

prediction 

Initial event 

history 

Rule parameter 

correction 

Estimated event 

history 

Expert feedback 
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both existing knowledge regarding the updates of rule 

parameters and indirect expert feedback. 

 

6. SELECTABILITY 

Selectability, is denoted by function Sr in a rule specification, 

plays an important role in event derivation, in both the 

deterministic and the uncertain settings. First, it defines which 

events are relevant to derivation according to rule r-an 

important semantic distinction. Just by analyzing the definition 

of Sr it is clear to a human which events are defined as being 

relevant to derivation according to r, and which events are 

ignored in this derivation. Selectability significantly influences 

the performance of the inference algorithm. In all tests, the 

performance deteriorates by orders of magnitude with the 

increase of relevant events. This, therefore, demonstrates the 

important role played by selectability in ensuring efficient 

processing of events. To explain, note that without the ability to 

filter out events that are irrelevant to derivation event derivation 

would always be carried out in a setting similar to the complex 

setting, in which most (or even all) events would be considered 

relevant to derivation. The details of selectability is been 

defined in [1]. 

7. SAMPLING 

The sampling algorithm generates a Bayesian network [5] from 

which the exact probability of each can be computed given an 

existing Bayesian network, it is also efficiently possible to 

approximate the probability of an event occurrence using a 

sampling algorithm the mechanism of probabilistic reasoning is 

achieved through the sampling procedure The algorithm 

RuleSamp[1]. 

 

7.1 PROBABILITY SPACE DEFINITION 

Probability space representation must be capable of 

representing the data associated with the events. the probability 

space representation is carried out through the representation of 

events that occurred at time t by representing all the events 

occurred at time t with a set of events called as worlds W the 

world contains the Event Instance Data (EID)[7],[3] of the 

occurred events at time t, a finite number of event 

representation at a possible world will have a finite number of 

EID’s and each of them will be assigned with a possible 

number of tuples these tuples represents the EID’s in world the 

probability space at time t can be represented using a triple pt = 

(Wt , Ft , μt) ,where Wt represents the set of possible worlds, 

with each possible worlds related to a specific possible event 

history at time t, Ft is an algebraic function Ft ⊆ 2
| W |

over the 

set of worlds Wt and μt is a probability evaluation function over 

Ft where μt : Ft → [0,1] we assume that that the event history 

associated with each possible world is finite and real world is 

one among those possible worlds, consequently each world is a 

finite event history consists a finite number of EID’s. 

8. STATISTICAL  ESTIMATORS 

The mechanism of rule tuning model devised in this frame 

work has the following functionalities estimation of the current 

rule state and updating the rule, later with the partial 

information provided by the domain expert. For the 

implementation of such strategy a machine learning technique 

is needed the family of statistical optimal estimators satisfy 

these properties, it is a simple computational algorithm that 

process the measurements to deduce the minimum error 

estimate of the state of a system by utilizing knowledge of 

system and measurement dynamics statistical estimation 

involved with three main type of problems namely filtering 

smoothing and prediction filtering is defined as the time at 

which an estimate coincides with the last measurement point, 

Smoothing is defined as the time of interest falls within the 

span of available measurement data, prediction is defined as the 

time of interest occurs after the last available measurement, 

This frame work is based on the kalman estimators which is a 

simple type of supervised Bayesian predict estimators and 

therefore preserve all the desired properties of the machine 

learning model for our needs. 

 

8.1 KALMAN FILTER 

 
Figure 3: kalman filter 

 

Figure 3 depicts the working of kalman filter the working can 

be described as the filter keep tracks of the estimated state of 

the system variance and uncertainty of the estimate. The 

estimate is updated using a state transitional model and 

measurements.  represents the estimate of the system 

state at time step k before the k  measurement yk has been taken 

into account  is the corresponding uncertainty. The 

Discrete kalman filter equations [12] can only be used in the 

presence of direct expert feedback i.e. when providing revisions 

to the parameter values only. 

 

9. DATA SET AND EXPERIMENTAL SETUP 

To measure the efficiency of the system the possible parameters 

that were used are possible number of worlds constructed, 

number of events eligible for derivation, efficiency of the 

statistical method, the experimental setup had a performance 

prediction method by the formula of ratio between number of 

events generated and total processing time the system was 

implemented in Java and an simulation run was conducted to 

get the average efficiency value of the system.  A sub set 

KDD’99 of DARPA off-line intrusions detections evolutions 

data sets was taken as the model set up and implemented. 

 

9.1 EXPERIMENTS CONDUCTED AND THE RESULTS 

 

The study of learning probability of the model is experimented 

the two parameters that where aimed at the presence were 
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totalScore 1 and totalScore 2 of the rule r5as given in the 

section 5this parameter was fine tuned by algorithm 1 the 

below graph 1 represents the result of the above conducted 

experiment 

 

 
Graph 1: stability analysis performance vs number of events 

 

The next experiment is to know the impact of event history 

length with the suggested mechanism. This is based upon the 

work done [2].The dataset training component is stable without 

any major fluctuations between the rate and characteristics of 

intrusion. It gives a positive link between the performance and 

event history length graph 2 provides the information between 

the performance and event history length training set  

 

 
Graph 2: performance vs. event history length 

 

Where, precision: is the percentage of correctly incidental 

events relative to the total number of events incidental 

considering the Intrusion Detection System evaluation it may 

be referred as percentage of correctly inferred intrusion events 

relatively to all the events identified as intrusion.  

Precision can be computed by the following formula                    

100 *{ 
| 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝑒𝑣𝑒𝑛𝑡𝑠  ∩ 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑  𝑒𝑣𝑒𝑛𝑡𝑠  |

| 𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑛𝑑  𝑒𝑣𝑒𝑛𝑡𝑠  |
} 

recall: is the percentage of correctly inferred events relative to 

the actual total number of events occurred in this time interval 

and regarding the intrusion detection system it may be defined 

as the percentage of correctly inferred normal events relatively 

to all the actual intrusion events. 

recall can be computed from the below formula,  

100*{ 
|{𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑙𝑒𝑎𝑣𝑒𝑛𝑡  𝑒𝑣𝑒𝑛𝑡𝑠 }∩{𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑  𝑒𝑣𝑒𝑛𝑡𝑠 }|

|{𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡  𝑒𝑣𝑒𝑛𝑡𝑠 |}
} 

falseAlarm: to identify the percentage of incorrectly inferred 

events relative to the number of explicit events in the time 

interval 

Performance evaluation is calculated by comparing the 

estimated event history ĥs(k)
f(k)

 received from the  inference 

mechanism and the actual event history hs(k)
f(k)

   provided by 

expert feed back at the end of time interval [formula] .A True 

Positive(TP) instance occurs whenever intrusion event was 

correctly inferred by the mechanism .A False Positive(FP) is 

identified whenever an event history is incorrectly inferred as 

intrusion ,when the lack of event was correctly identified as 

such ,it is referred to as True Negative(TN) and finally False 

Positive(FP) instance occurs whenever an event occurs yet was 

not inferred by the system. 
 

10. CONCLUSION 

The frame work devised is one of the solutions to the domain 

expert’s complexity in upgrading the rules implemented for 

event processing and the efficiency of the event derivation 

under uncertainty the other possible ways of implementing this 

same frame work can be done in regression model or a model 

using machine learning techniques from large set of historical 

datasets. This approach is general suitable for enabling 

unpredictable conclusion for any event driven system. The 

complexity of the definition of rule parameter is been reduced 

by the Rule Prediction and Rule Correction paradigm the 

continuous tuning of the rule is carried by using the machine 

learning technique. This method can be achieved by other ways 

such as implementing a technique that will predict the 

efficiency of the initial value defined by the domain expert 

 

11. FUTURE WORK 

There is much other way in which one could attempt to directly 

model the rules using an extension of Bayesian networks or a 

stochastic extension of Petri Nets. Another possibility is the 

direct creation of statistical models (e.g., regression) or a model 

created using machine learning techniques from a large 

historical set of data This frame work can be implemented in a 

highly throughput system so that its performance can be 

increased 
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