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Abstract—This paper studies the unsteady flow and heat transfer 

of two viscous immiscible fluids between two parallel plates. The 

partial differential equations governing the flow and heat 

transfer are solved analytically using two-term harmonic and 

non-harmonic functions in both fluid regions of the channel. 

Effects of physical parameters such as height ratio, viscosity 

ratio, conductivity ratio, Prandtl number, Eckert number, 

periodic frequency parameter and pressure on the velocity and 

temperature distributions are given and illustrated graphically 
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NOMENCLATURE 

 A  real positive constant 

 
P

C  specific heat at constant pressure 

 g


 gravitational acceleration 

 K  thermal conductivity 

 P  pressure 

 Ec Eckert number 

 Pr  Prandtl number 

 T  temperature 

 
wT  wall temperature 

 t  time 

 u  velocity components of velocity along the 

plate. 

 
0U  average velocity 

    

 Greek letters 

 density luidf    

 fluidofitycosvis  

 parameterperiodicofntcoeffiecie  

 parameterfrequency  

 parameterfrequencyperiodict  

   kinematic viscosity 

   nondimensional tempeaure 

 

 Subscripts 

1,2 quantities for Region-I and Region-II respectively 

 

 

 

 

I. INTRODUCTION 

Problems involving immiscible multi-phase flow and heat 

transfer and multi-component mass transfer arise in a number 

of scientific and engineering disciplines. Important 

applications include petroleum industry, geophysics and 

plasma physics. In modeling such problems, the presence of a 

second immiscible fluid phase adds a number of complexities 

as to the nature of interacting transport phenomena and 

interface conditions between the phases. In general, multi-

phase flows are driven by gravitational and viscous forces. 

There has been some theoretical and experimental work on 

stratified laminar flow of two immiscible fluids in a horizontal 

pipe ,[1,2].  [3] studied two-phase MHD flow and heat transfer 

in a parallel plate channel, with one of the fluids being 

electrically conducting. Two-phase MHD flow and heat 

transfer in an inclined channel was investigated by [4]. Later 

on convective magnetohydrodynamic two-fluid flow and 

convective flow and heat transfer in composite porous 

medium was analysed by [5,6]. Fully developed flow and heat 

transfer in horizontal channel consisting of an electrically 

conducting fluid layer sandwiched between two fluids layers 

is studied analytically by [7] 

 All the above studies pertain to steady flow. [8-11] 

have presented analytical solutions for unsteady/oscillatory 

two-fluid and three-fluid flow and heat transfer in a horizontal 

channel. However, most problems of practical interest is 

unsteady. Keeping in view the wide area of practical 

importance of unsteady multi-fluid flows as mentioned above, 

it is the objective of the present study to investigate unsteady 

flow and heat transfer of two–fluid model in a horizontal 

channel.  

 

II. MATHEMATICALFORMULATION 

      Consider a two dimensional unsteady flow of two 

immiscible fluids in a horizontal parallel permeable plates, 

extending in the Z and X direction. The region hy 0  

(Region-I) is filled with a viscous fluid having density
1

 , 

dynamic viscosity
1

 , specific heat at constant pressure 

1PC thermal conductivity
1

K  and the region 0− yh  

(Region-II) is filled with a different viscous fluid having 

density 2 , dynamic viscosity
2

 , specific heat at constant 

pressure 
2P

C  and thermal conductivity
2

K .  

 

 The flow of both regions is assumed to be fully 

developed and fluid properties are constant and driven by a 
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common pressure gradient 
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gradient 











−

x

P
2 in region-II . The two plates are maintained 

at constant temperatures .
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 Under these assumptions and taking 
021

 ==  

and 
ppp

CCC ==
21

the governing equations of motion and 

energy (Loharsbi and Sahai, 1988) are given by: 
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where u is the x-component of fluid velocity, v is the y-

component of fluid velocity and T is the fluid temperature. 

The subscripts 1 and 2 correspond to region-I and region-II, 

respectively. The boundary conditions on velocity are the no-

slip boundary conditions which required that the x-component 

of velocity must vanish at the wall. The boundary conditions 

on temperature are isothermal conditions. We also assume the 

continuity of velocity, shear stress, temperature and heat flux 

at the interface between the two fluid layers at y=0. 

 

 The hydrodynamic boundary and interface 

conditions for the two fluids can then be written as  
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The thermal boundary and interface conditions on temperature 

for both fluids are given by 
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By use of the following non-dimensional quantities:  

( )
21

2

0

1

1

21

2

01

2

*

2

**

0

Pr
wwp

p

ww

w

i

iii

TTC

U
Ec

K

C

TT

TT

x

P

U

h
Pt

h
thyyuUu

−−
==

−

−
=













====





(7) 

 

and for simplicity dropping the asterisks, equations (1) to (6) 

becomes 
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where 
1

2




=m  is the ratio of viscosities and 

1

2

K

K
b =  is the 

ratio of thermal conductivities.   

 The hydrodynamic and thermal boundary and 

interface conditions for both fluids in non-dimensional form 

become 
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III. SOLUTIONS 

 The governing equations (8) to (11) are solved 

subject to the boundary and interface conditions (12) and (13) 

for the velocity and temperature distributions in both regions. 

These equations are partial differential equations that cannot 

be solved in closed form. However, it can be reduced to 

ordinary differential equations by assuming 

 

 ( ) ( ) ( ) −−−++= yueyutyu
j

ti

jj 10
,   (14) 

 ( ) ( ) ( ) −−−++= yeyty
ji

ti

jj 10
,  

 (15) 

 ( ) ( ) ( ) −−−++= yPeyPtyP
j

ti

jj 10
,   (16) 

where j-1,2 for region-I and region-II respectively. 
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 By substitution of equation (14) to (16) into 

equations (8) to (13), one obtains the following pairs of 

equations: 
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The corresponding boundary and interface conditions become 

as follows: 
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Equations (17) to (25) along with boundary and interface 

conditions (26) to (29) represent a system of ordinary 

differential equations and conditions that can be solved in 

closed form. Since the solutions can be obtained directly, the 

expressions are not presented. The results are depicted 

graphically and are discussed in the next section. 

 

IV. RESULTS AND DISCUSSION 

In this section representative, flow results for oscillatory 

flow and heat transfer of two immiscible fluids between two 

parallel plates are presented and discussed for various 

parametric conditions. The flow governing equations cannot 

be solved exactly. However the closed form solutions were 

found considering the cosine function for frequency parameter 

on velocity and pressure is assumed. The solutions are 

depicted graphically in Figs. 1 to 7 for different values of 

viscosity ratio, periodic frequency parameter and pressure on 

the flow and thermal conductivity ratio, Prandtl number and 

Eckert number on temperature field. The parameters are fixed 

as 1 except the varying one, Pr=0.7, Ec=0.5 and t =450. 

Figure 1 shows that velocity profiles are suppressed for 

large values of viscosity ratios. The flow profile is large in 

region-II compare to region-I, and the similar effect observed 

for different values of viscosity ratio on temperature profile as 

shown in Fig. 2. 

Figure 3 and 4 observed that the variation of periodic 

frequency parameter t on velocity and temperature profiles 

respectively, as t increases the flow increases,  the 

t increases temperature profiles is also increases in both the 

regions, since the solutions are approximated by function of 

since the solutions are approximated by exponential function 

of t . 

Keeping in view the physical model of the flow of two 

immiscible fluids such as water and oil in petroleum 

industries, a study is made to know the effect of pressure on 

the flow as shown Fig.5. We have considered different values 

of pressure for two fluids separately. For positive values of 

pressure on upper and lower fluids, the flow is promoting. For 

positive values of pressure in the lower region and negative 

values of pressure in the upper region display the effect of 
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Fig.1 Velocity profiles for different values of viscosity ratio m 
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Fig.2 Temperature profiles for different values of viscosity ratio m 
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. 

maximum velocity in region-I. On the other hand if we take 

negative values of pressure in lower region and positive values 

of pressure in the upper region also show the maximum 

velocity in region-I itself but the flow direction is opposite. 

Assigning negative values of pressure also show the similar 

effect to that for positive values of pressure except in opposite 

direction. It is observed that controlling the pressure parameter 

one can also control the direction of flow, which has immense 

applications in flow reversal problems.  

The effect of thermal conductivity ratio is depicted in    

Fig. 6. As the ratio increases the magnitude of suppression is 

large in region-I compared to region-II. This is obvious 

because the upper plate is maintained at a low temperature 

compared to region-I. 

Figures 7 and 8 display the effect of Prandtl number and 

Eckert number respectively on temperature filed. It is seen that 

temperature is increases with increase in Prandtl number as 

well as Eckert number. Since the values of Prandtl number are 

very small for liquid and metals and it is very high for highly 

viscous fluid. 

Thus one can conclude that the flow can be controlled by 

considering different fluids having different viscosities, 

periodic frequency and applying different pressures. 
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Fig.6 Temperatur profiles for different values of conductivity ratio b
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Fig.8 Temperatur profiles for different values of Eckert number Ec
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Fig.7 Temperatur profiles for different values of Prandtl number Pr
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