
User Query Processing Using Distance Oracle For Road Networks
Anil S Naik

 Assistant professor
Department of Information Technology, WIT, Solapur University, Solapur

Abstract

The popularity of location-based services and the need

to perform real-time processing on them has led to an

interest in queries on road networks, such as finding

shortest paths and finding nearest neighbours. The

challenge here is that the efficient execution of

operations usually involves the computation of distance

along a Road network instead of “as the crow flies,”

which is not simple. This requires the precomputation

of the shortest paths and network distance between

every pair of points (i.e., vertices) with as little space

as possible rather than having to store the n
2
 shortest

paths and distances between all pairs. A data structure

called a road network oracle is introduced that resides

in a database and enables the processing of many

operations on road networks with just the aid of

relational operators. Two implementations of road

network oracles are presented. This Paper investigates

the problem of efficiently computing exact and

approximate shortest paths in graphs, with the main

focus being on shortest path query processing.

Strategies for computing answers to shortest path

queries may involve the use of pre-computed data

structures (often called distance oracles) in order to

improve the query time. To reduce amount of Storage

Space in Database using distance oracle concept.

1. Introduction
The growing popularity of online mapping

services such as Google Maps, Microsoft Bing, and

Yahoo! maps has led to an interest in responding to

queries in real time, such as finding shortest routes

between locations along a Road network as well as

finding nearest objects from a set S (e.g., gas stations,

markets, college institutions and restaurants) where the

distance is measured along the shortest path in the

network. Elements of S are usually constrained to lie on

the network or at the minimum to be easily accessible

from the network. The online nature of these services

means that responses must be generated in real time.

The challenge in performing queries on road networks

is that operations involve the computation of distance

along a Road network (i.e., network distance) instead of

―as the crow flies,‖ which is not simple.

Distance Oracle technique goal is to be able to

determine the network distance between any pair of

points (i.e., vertices) without having to store the n
2

distances between all pairs. We are willing to expend a

bit more time to achieve this such as O(log n) instead

of O(1) as well as accept an error in the accuracy of the

distance that is provided. The strategy that we follow

reduces the space requirements to as low as O(n/ε
2
),

and is based on the ability to identify groups of source

and destination vertices for which the distance is

approximately the same within some ε.

2. Literature Review
Operations on road networks are expensive

because computing distances between two objects (e.g.,

postal addresses) on the road network requires the

invocation of a shortest path algorithm). A popular

shortest path algorithm is Dijkstra’s algorithm, which if

invoked between a source vertex q and a destination

vertex v, ends up visiting every vertex that is closer to q

via the shortest path from q than v.

The single source shortest path problem can be

described as follows:

Let G= {V, E} be a directed weighted graph

with V having the set of vertices. The special vertex s

in V, where s is the source and let for any edge e in E,

Edge Cost(e) be the length of edge e. All the weights in

the graph should be non-negative.

A drastic alternative to the use of Dijkstra’s

algorithm is to precompute and store the shortest paths

between all possible vertices in the Road network.The

algorithm works as follows for a given source vertex

(node) in the graph, it finds the path with lowest cost

(i.e. the shortest path) between that vertex and every

other vertex. It can also be used for finding costs of

shortest paths from a single vertex to a single

destination vertex by stopping the algorithm once the

shortest path to the destination vertex has been

determined. For example, if the vertices of the graph

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

represent cities and edge path costs represent driving

distances between pairs of cities connected by a direct

road, Dijkstra's algorithm can be used to find the

shortest route between one city and all other cities. As a

result, the shortest path first is widely used in network

routing protocols, most notably IS-IS and OSPF (Open

Shortest Path First).

In particular, it is not uncommon for Dijkstra’s

algorithm to visit a very large number of the vertices of

the network in the process of finding the shortest path

between vertices that are reasonably far from each

other in terms of Figure 1: calculates the shortest path

and distance between two nodes on a map: Shortest

distance between node 1 to 27.

 The major disadvantage of the algorithm is the

fact that it does a blind search there by

consuming a lot of time waste of necessary

resources.

 Another disadvantage is that it takes more

Space to store n number of vertex.

3. Proposed System
We propose a new system which is based on

Distance Oracle. The Distance Oracle can Provide the

shortest path between any two places in Road Network

in O(log n) time (less Query Execution time compared

to Dijikstra’s Algorithm) while reducing the storage to

O(n) or O(n log n). Also it can store the distances in a

table , so it is possible to transform search operations to

SQL queries.

The techniques that we develop in this Paper

is based on our inference that given our assumptions on

the proximity of the vertices that comprise A and those

that comprise B, and the lack of proximity between A

and B, that the network distance to the vertices in A

from the vertices in B will more or less be similar and

can be approximated by a single value (termed the path

coherence property).

The novelty of our approach is that in the case of the

computation of the distance between two vertices, we

show how to correlate the extent of this reduction of the

space requirements with the approximation error in the

value of the distance that is obtained. This is achieved

via the introduction of a more general construct, termed

an approximate distance oracle for Road networks, that

is capable of responding to network distance queries

between any two vertices of the Road network with a

specified approximation ε—that is, given a start vertex

u and a destination vertex w in Road network G, the

network distance Sε(u,w) produced by the oracle Sε is

no more or less than an ε fraction of the actual network

distance dG(u,w) between u and w in G.

4. Objectives & Scope
To implement a Distance oracle based

distance search system for a Road Network. The users

of the system must be able to search the distance

between any two places in the system and the path.

Also users can use this system to find places near an

area around some fixed radius.

We implement the Distance Oracle system and

compare the performance of the system with the

Dijikstra algorithm against time and memory and prove

our proposed system works better

5. Approximate Distance Compute

Implementations

The techniques that we develop in this Paper

is based on our inference that given our assumptions on

the proximity of the vertices that comprise A and those

that comprise B, and the lack of proximity between A

and B, that the network distance to the vertices in A

from the vertices in B will more or less be similar and

can be approximated by a single value (termed the path

coherence property).

The use case diagram captures the requirements of the

system in brief as shown in fig 5.1. The novelty of our

approach is that in the case of the computation of the

distance between two vertices, we show how to

correlate the extent of this reduction of the space

requirements with the approximation error in the value

of the distance that is obtained. This is achieved via the

introduction of a more general construct, termed an

approximate distance Oracles for Road networks, that

is capable of responding to network distance queries

between any two vertices of the Road network with a

specified approximation ε—that is, given a start vertex

u and a destination vertex w in Road network G, the

network distance Sε(u,w) produced by the Oracles Sε is

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

no more or less than an ε fraction of the actual network

distance dG(u,w) between u and w in G.

Fig 5.1 use case diagram of a system.

5.1 Pseudo Code for Distance Oracles

1 Input : S - place , D – destination

2 Output : distance

3 A = getNearestFromDB(S);

4 B = getNearestFromDB(D);

5 ResultSet rs = ExecuteQuery(―select * from

distancemat where sourcevertex=A and destvertex = B

―);

6 Distance = rs.distance;

5.2 Algorithm for Finding Places around R by

using Distance Oracles
1 Input : R - place , D – distance

2 Output : Neighbour

3 for i=1 : no of nodes

4 if distanceusingOracles(node(i) , R)<= D

5 addtoNeighbour(Neighbour,node(i));

6 end node(i);

7 end;

Algorithm finds Neighbours places around R with in

Mentioned range. It checks all nodes with in Particlar

range and Displays all Place names. First it finds nodes

neighbours to Source node, add to list if user Queries

neighbor nodes then it displays on GUI.

5.3 Road Network Oracles

Our precomputed input representation of a road

network containing n vertices is of size O(n
3
). Our goal

here is to convert it to a database friendly

representation that is much smaller in size. The Road

Network Oracles (or simply Oracles) O of a road

network G is a data structure that completely

encapsulates all the n
2
 shortest paths and network

distances between every pair of vertices in G. The

obvious storage choice for O in a relational database

system is a database relation.

 The schema of a relation that captures the shortest

paths is given by: O(AB, ᴪ), where AB represents the

group identity of the vertices in the road network

belonging to A and B, such that is the common

intermediate vertex ᴪ on the shortest paths between

them. Another relation records the network distances

separately using another relation with the schema:

O(AB, dapx), where again AB is the group identity of the

source and destination vertices whose network

distances are approximated with dapx. Of course, for the

sake of simplicity, if we assume (not without merit)

that the vertices that make up AB in the relation storing

the shortest paths are also the same ones that make up

AB in the relation storing the network distances, then

we can combine these two relations into a single

relation with the schema: O(AB, ᴪ, dapx).

 5.3.1 Operations on Road Networks using SQL:

 Given an implementation of O(AB,ᴪ , dapx), we

now show how we can efficiently perform query

processing on it using SQL. In particular, we

demonstrate how many operations on road networks

can be expressed using SQL (and relational operators)

in the context of a database system. Our example

assumes the following setup. Let R be a relation of

restaurants with schema (id, type, price), where id

uniquely identifies restaurants on the road network,

type is the kind of the cuisine served by the restaurant,

and price is the average cost.

We also define another relation Q of movie

theaters given by the same schema (id, movie id) where

id uniquely identifies the movie theater on the road

network, and movie id is a movie playing in the theater.

Given a source p and destination q, let Z(p, q) map

them to a group key AB such that A contains p, and B

contains q so that one can find a tuple in O with the aid

of B-tree on O.AB such that the value of AB equals Z(p,

q). We present the following queries on a Road

network.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Approximate Network distance: Run the Paper and

given source and destination Network distance can be

obtained by:

query ="select * from distancemat where srcvertex= " +

from + " and destvertex=" + to + "'";

Region Search: Given a Query location q obtain all

restaurants in R that are within 10 miles of q which

serve Italian food. Of course this query would make

more sense if the Oracles can given a 𝜀 guarantees on

the quality of the network distance answers.

k-Nearest neighbour Search:Given a Query location

q,determine the closest restaurant in R to q which serve

Italian food.

6. System Architecture

The System architecture is shown below.

Figure 6.1 System Architecture

The system is divided into following modules.

There are totally 5 modules of the System these are

Road Network Data Processor, Dijkstra’s engine,

Distance Oracles Engine, Distance Query Processor,

Range Query Processor.

 Road Network Data Processor: This module

reads the road data matrix in the spread sheet

of .xsl format and stores in internal data

structure of graph with nodes and connections.

 Dijikstra engine: This module implements the

Dijikstra algorithm. By using the Dijikstra

shortest path algorithm, it can provide the

distance between two points.

 Distance Oracles Engine: This module

implements the Distance Oracles algorithm to

store the reduced set of linked nodes and their

distance pre computed using Dijikstra into the

Database.

 Distance Query Processor: This module finds

the shortest distance between two points by

using Dijikstra Algorithm and then Distance

Oracles. The results of path and the time taken

to compute the path are displayed in GUI.

 Range Query Processor: This module finds the

places around any point within a range of

distance d provided by the user by using

Dijikstra Algorithm and then Distance

Oracles. The results of places and the time

taken to compute the path are displayed in

GUI.

 Database: MySQL database store data in two

tables distancemat and approxlocation ,

distanemat table contains distance between

places stored in table and approxlocation table

contains vertex with nearest nieghbour nodes.

7. Experimental Result

7.1 Performance of time and Storage Space by

Dijikstras’s Algorithm and Distance Oracles

Algorithm.
Figure 7.1 and 7.2 Shows Compare Query time for

execution and Storage Space by Dijikstras’s Algorithm

and Distance Oracles Algorithm respectively.

 The Performance graph for comparing time

against the size the road network between

Dijikstra and distance Oracles must be

displayed

 The Performance graph for comparing Storage

Space for the road network.

 Fig 7.1 Shows Size of road network increases,

Storage Space increases by using Dijkstra’s

Algorithm and Compare to Distance Oracles

memory Space will be linear. It takes very less

space compared to Dijkstra’s Algorithm.
 The main Paper goal is to Reduce the Query

execution time and Storage Space.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 7.1: Performance of Algorithms in Query

execution time comparison.

Figure 7.2: Performance of Algorithms in Storage

Space comparision

8. Conclusion & Future Enhancements

In this Paper we presented an alternate way of

performing operations on road networks using road

network Oracles, which reside in a database system and

enable operations on road networks using SQL. Our

approach of converting road networks into Oracles

provides an opportunity to move away from traditional

methods of working with road networks towards a way

that is scalable, efficient, database friendly, and being

able to support Internet-scale real time operations.

We presented a few possible implementations

of the Oracles that use the Road Information in a road

network to provide group memberships to vertices in

the road network. The path-distance Oracles can be

shown to be linear in n as well as being able to provide

an intermediate vertex in the shortest path as well as an

ϵ-approximate network distance between any pair of

vertices drawn from the road network. Distance Oracle

Algorithm processes query faster and the Storage Space

is less Then Dijikstra’s Algorithm.

 Another open problem is whether dynamic

Oracles can be designed so that they can deal with

updates as is the case when road segments or vertices

become closed or road segments become one way, as

well as other dynamic traffic conditions such as

congestion which may make some routes more

acceptable. Finally, there is the issue of how to

optimize operations involving the Oracles so that

operations can be optimized effectively in the context

of a relational database system. In particular, how can a

query optimizer be taught more strategies to perform

road network queries more effectively.

References

[1] J. Sankaranarayanan and H. Samet, ―Distance

Oracles for Road Networks,‖ Proc. IEEE Int’l Conf.

Data Eng. (ICDE), pp. 652-663, Apr. 2009.

[2] Christian Sommer, and Y. Tao, ―Approximate

Shortest Path and Distance Queries in Networks,‖

Proc. Conf. Very Large Data Bases (VLDB), pp. 802-

813, Sept. 2003.

[3] H.-J. Cho and C.-W. Chung, ―An Efficient and

Scalable Approach to CNN Queries in a Road

Network,‖ Proc. Conf. Very Large Data Bases (VLDB),

pp. 865-876, Sept. 2005.

[4] N. Jing, Y.-W. Huang, and E.A. Rundensteiner,

―Hierarchical Encoded Path Views for Path Query

Processing: An Optimal Model and Its Performance

Evaluation,‖ IEEE Trans. Knowledge and Data Eng.,

vol. 10, no. 3, pp. 409-432, May 1998.

[5] S. Jung and S. Pramanik, ―An Efficient Path

Computation Model for Hierarchically Structured

Topographical Road Maps,‖ IEEE Trans. Knowledge

and Data Eng., vol. 14, no. 5, pp. 1029-1046,

Sept./Oct. 2002.

[6] H. Samet, Foundations of Multidimensional and

Metric Data Structures. Morgan-Kaufmann, 2006.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Mr. Anil s Naik received the B.E

degree in Electronics and Communication Engineering

in 2009 from VTU University, Belgaum, India and M.

Tech degree in Information Technology in 2011 from

VTU Belgaum, India. He is presently working as an

Assistant Professor in Department of IT Walchand

Institute of Technology, Solapur, Maharashtra, India.

His research interests include Data Mining,Software

Engineering.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

