
Using OPENCV over MATLAB for

Implementing Image Processing Application on

CUDA GPU to Achieve Better Execution Speedup

Shraddha Oza1,
E&Tc Department,

Army Institute of Technology,

Pune, India

Dr. (Mrs.) K. R. Joshi2
E & Tc Department,

PES Modern College of Engineering,

Pune, India

Abstract - Digital Image Processing is significant for correct

interpretation, analysis and enhancement of digital images. It

has varied applications in the domain of computer vision,

medical imaging, astronomical imaging, photography. Matlab

and OpenCV are the two most popularly used toolkits for

building the image processing applications. The purpose of

the work presented here is to compare and analyse

performance of these two platforms in the context of

execution speed. A color (RGB color space) to gray converter

was implemented using Matlab as well as OpenCV with CPU

at the backend executing the code sequentially. The

conversion speed was found to be much higher in case of

OpenCV. The same converter was implemented using CUDA

GPU, which gave higher speed up over its CPU version due to

its extensively parallel architecture. The work highlights use

of OpenCv library to be used alongside CUDA C for pre and

post image processing functions executed by CPU, to achieve

maximum speed up. In future, different optimization

techniques for CUDA may be used to enhance the speed up.

Keywords : Matlab, OpenCV, CUDA, Color to gray converter

INTRODUCTION
Digital image processing has a wide range of applications
in the domain of medical imaging, telemedicine, acoustic
imaging, and video surveillance. Typical Image Processing
operations include image segmentation, image denoising
and image enhancement. Image enhancement implies
processing the input image such that information in the
image is restored and is more useful for information
analysis. Color to gray conversion is one of the commonly
used image enhancement techniques. The color to gray
scale image conversion process should retain the
information alongside gray scale output.
There exist many conversion algorithms, each one with its
pros and cons [2][4]. The work here presents
implementation of color to gray converter which computes
luminance from Red, Green and Blue colors in the image
by applying different weights to each color [1][3][4].
In the work presented, the color to gray scale image
converter was implemented separately using Matlab toolkit
(version 2010) and OpenCv library (2.4.10) on Windows 7,
i5 quad core platform. As these two platforms are distinct
in their approach [8][9] and are popularly used, the purpose
was to compare their performance in terms of speed up. It
was observed that, as the image resolution was increased
from 255X255 to 4096X4096 OpenCV proved to be much
faster than Matlab.

Considering the performance efficiency of Graphics
processor for data parallel computations [5][6][10], in the
proposed work, the color to gray converter was
implemented also using CUDA C with GPU at backend.
The speed up achieved was much higher as compared to
CPU OpenCV version.

The work is presented in seven sections. The first three
sections explain the basis for Matlab, OpenCV platforms
and their comparison. Section IV briefly describes CUDA
architecture. Section V gives details of the mathematical
model used to implement color to gray converter. Section
VI describes the experimental set up and section VII
elaborately discusses the observations and conclusions
drawn.

I. MATLAB
MATLAB stands for MATrixLABoratory and the software
is built around vectors and matrices. It has
tool boxes which can be used for developing signal
processing and image processing applications.

Matlab is an interpreted language. The Matlab code is
translated piece by piece into an equivalent machine code
during the runtime of the program and immediately
executed. It is a relatively simple language and easy to use.
The typical programming issues such as including libraries,
memory allocation, and variable declarations need not be
accounted for. Thus, it is extensively used for developing
image processing applications [9].

II. Open CV
OpenCV is an acronym which stands for Open Source
Computer Vision Library. It was originally developed by
Intel to provide access to image processing functions
required to build computer vision applications. It is a
library of different inbuilt functions which are mainly
written to achieve real time performance. Being open
source, the library functions get continuously improvised
and optimized. The inbuilt library functions have the
capability to exploit multi-core processing. It is free for
commercial as well as noncommercial use and is supported
by Willow Garage.
OpenCV is written in optimized C/C++ thus, as against
Matlab, the function is compiled by a C/C++ compiler and
not interpreted which makes its performance much faster.
[8]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040455
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

620

III. MATLAB VS OPENCV
The comparison of the two popularly used development
platforms can be done with following parameters –

 Resources Required: As Matlab is a high levelscripting

language, it uses a lot of system resources as against
OpenCV. Also, OpenCV being open source,
optimization is a continuous process.

 Execution Speed: The Matlab code is interpreted and

executed while an OpenCV code is compiled and
executed. Thus, program in OpenCV executes much
faster than similar program in Matlab.

 Development Cost: Matlab is a commercial software

and is costly while OpenCV being open source is free.
 Portability: Matlab and OpenCV both support

Windows, Linux and Mac Operating system. The
application developed using OpenCV can very well be
ported to any device or machine that can run c.

 Support to parallel architecture: Matlab and OpenCV

both equally provide good library support to parallel
architecture.

IV. CUDA
In 2007, Nvidia launched its CUDA (Compute Unified
Device Architecture) compliant GPU devices for general
purpose applications. These devices have proved to be
much superior especially for image processing applications
[5][6].

CUDA GPU is collection of SMPs (Symmetric
Multiprocessors), each one with a capacity to launch large
number of threads executing concurrently. Thus, CUDA
avails a very powerful environment of highly parallel data
computation. In recent years, the CUDA devices are being
used to develop a variety of general purpose applications
especially in the domain of image processing, it being a
typical single instruction multiple data computation
domain. CUDA uses a language which is largely an
extension to C language which makes it programmer
friendly.

The CUDA programmer needs to define the threads to be
used or instantiated in terms of block size and grid size. A
bock is defined as group of threads and it can hold
maximum 512 or 1024 threads. A grid is a group of blocks
and a unique multiprocessor is assigned to each block for
execution. (Fig 1)

Fig 1: CUDA Programming Model [10]

In CUDA C, parallel execution is indicated by launching a
kernel function. The kernel function is in turn executed by
a set of concurrent threads. The concurrency factor
provides the intended speed up. The syntax for a kernel call
in the context of the color to gray converter is
ctgr_to_gray_kernel<<<grid,block>>>(d_input,d_o
utput,input.cols,input.rows,input.step,output.s
tep);

Here ctgr_to_gray is name of the kernel function as used in
the work presented here, grid and block values together
define maximum threads executed and rest are parameters
required for the function to execute properly.

V. THE COLOR TO GRAY CONVERTER

RGB color space is defined by the three basicadditive
primary chromaticity: the red, the green, and the blue (refer
Fig 1). Using these three colors and by changing the
weights associated, any chromaticity can be produced. The
human RGB is close to the way human visual system
works. Thus it is a convenient color model for computer
graphics. Humans do not perceive all colors equally. Thus,
a good gray scale conversion is to weigh each color (Red,
Green, Blue) based on the way human eye perceives it. The
color to gray conversion is based on the formula given
below [1][3][4]-

Gray = (Red * 0.3 + Green * 0.59 + Blue * 0.11) (1)

The above expression forms a weighted sum of the red,
green, and blue components. This function transforms a 24-
bit, three-channel, color image to an 8-bit, single-channel
gray scale image. The weighted sum is also known as
luminance. The weights used to compute luminance are
related to the monitor's phosphors. The basis for the
expression is that for equal amounts of blue and green
light, the green will be perceived as brighter. Though the
resulting gray scale image is dynamic, the formula requires
computations.

pixel R CHANNEL

 G CHANNEL

B CHANNEL

Fig. 2: RGB Image

VI. EXPERIMENTATION

To analyse the performance of Matlab and OpenCV
CPU version as against CUDA GPU version, six color
(PNG type) images of different resolution were selected
ranging from 255x255 to 4096x4096. The color to gray
converter was applied to each of the images and the
speed of conversion was noted down (Refer to table 1).
The sample RGB image and the converted gray scale
image is given in fig 3 and fig 4 respectively.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040455
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

621

Matlab

Opencv

CUDA

Image

Resolution

(CPU)

(CPU)

(GPU)

(pixels)

(msec)

(msec)

(msec)

I1

225x225

1.167

1.7411

0.211456

I2

512x512

4.078

5.972

0.5744

I3

1100 x 1099

18.314

8.704

2.3767

I4

1344 x 1008

16.458

10.3393

3.8707

I5

2048 x 1536

50.859

15.317

6.0096

I6

4096 x 4096

199.384

51.971

31.4265

Table1: Conversion time of color to gray converter in Matlab(CPU),
OpenCV(CPU) and CUDA GPU

Fig 3: Sample Colored Image (RGB

Fig 4: Output Gray Image

The experimentation for Matlab(ver 2010) and
OpenCV(ver 2.4.10 integrated with visual studio 2010) was
done on i5 quad core processor machine with windows 7
OS.

The CUDA implementation was done using GEFORCE
830M. The kernel function was defined for color to gray
conversion as given in section III. The grid dimension was
calculated for each image size using following formula:

Grid dim = [(Image Width + (block size in x direction – 1)
/ Threads per Block in x direction), (Image Height + (block
size in y direction – 1) / Threads per Block in y direction)
[7][10]

Here, Block size was defined to be (16, 16) i.e. 256 threads
per block. Thus, for an image of 225 X 225, total threads
instantiated for computation were 15/block to cover the
whole image while it was 256 threads /block for the image
size of 4096X4096.

 200

m
ill

is
ec

o
n

d
s

150

100

Matlab

50

OpenCV

0

CUDA

 2
2

5
x2

2
5

5
1

2
x5

1
2

1
1

0
0

x1
0

9

9

1
3

4
4

x1
0

0

8

 20
4

8
x1

5
3

6
 40

9
6

x4
0

9

6

 I1 I2 I3 I4 I5 I6

Image pixel resolution

Fig 5: Conversion Time Vs Images with different pixel resolution

VII. OBSERVATIONS AND CONCLUSION

As can be seen from table 1and fig 5, Matlab proved to be
faster than OpenCV for image size 225X225 with
execution time of 1.167 msecs and 512X512 with
execution time of 4.078 msecs. But as the image size
increased beyond IK resolution, OpenCV started giving
better results. For maximum size of

4096X4096 resolution
Matlab version conversion was completed in 199.384
msecs while that in OpenCV finished in 51.971msecs.

The parallel domain CUDA GPU version of the converter
proved to be fastest for all the image sizes. The conversion
time for 225X225 was found to be 0.21146 msecs and that
for 4096X4096 was found to be 31.4265 msecs.

The color to gray conversion is done by

applying the

equation (1) given in section IV. As this equation is applied
to every pixel in image per channel, the process obviously
involves for/while loop running with repetition count equal
to image size per channel. OpenCV being a compiled

language, the “for / while”

loop bodies are transformed
into machine code only once at compile time. However, in
interpreted languages like Matlab, the loop body is
translated each time a loop executes making the conversion

much slower. As can be seen from the graph

in Fig 4, the
converter when applied to the I6 image with resolution of
4096X 4096 pixels, Opencv proved to be much faster than
its Matlab counterpart by 20.5445 msecs.

The CUDA implementation was done using CUDA tool
chain ver 6.5 integrated with visual

studio 2010. The image
preprocessing was done using OpenCV. In future different
optimization techniques may be implemented such as
tiling, separable approach, and use of shared memory [10].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040455
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

622

There exists different color to gray algorithms. These
algorithms may be implemented and the gray image
obtained can be analysed to quantify performance of
algorithm. [3][4]

REFERENCES

[1] http://gimp- savvy.com/BOOK/index.html?node54.html
[2] Mark Grundland et al,“Decolorize: fast, contrastenhancing,

color to grayscale conversion”, ComputerLaboratory,

University of Cambridge
[3] M. ˇCadík et al, “Perceptual Evaluation of Color-to-

Grayscale Image Conversions”, Pacific Graphics2008,

Volume 27 (2008), Number 7
[4] www.tannerhelland.com/3643/grayscale-

image-algorithm-vb6/Oct 1, 2011
[5] ShuaiChe et al., “A performance study of general-purpose

applications on graphics processors using CUDA”, Journal

of Parallel and Distributed

 [6] Computing, Elsevier, Volume 68, Issue 10, October2008

[7] J D Owens et al., “GPU Computing”, Proceedings of the

IEEE(Volume:96, Issue: 5),ISSN - 0018-9219, May 2008

[8] Cliff Woolley, NVIDIA Developer TechnologyGroup
www.opencv.org

[9] http://in.mathworks.com
[10] https://developer.nvidia.com/opencv

[11] www.mathworks.com/discovery/matlab- gpu.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040455
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

623

