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Abstract  
 

It is observed that a 2D Photonic crystal model of 
dielectric rods in air in square and triangular lattice 
configurations have a complete band gap in TM mode. 
A line defect created by making the radius of the rods 
along a line half of the normal case creates a 
waveguide with a single waveguide mode in the band 
gap region. In this paper the variation in the relevant 
features of this single mode with dielectric constant of 
the line defect has been explored by simulation method.     
 
 
1. Introduction  
Photonic crystals are dielectric material structures 
based on periodic modulation of dielectric constant. 
They find numerous optical applications. The periodic 
variation of dielectric constant may be along a line as 
1D, in a plane as 2D and in space as 3D respectively. 
 
Photonic crystal structure medium responds to an 
electromagnetic wave by determining its wavelength 
and direction of propagation. This is suitably described 
by the dispersion relation associating frequency of the 
wave with the wave vector it assumes in the medium. 
Remarkably, the behaviour in unit domain or region of 
periodicity is repeated everywhere in the medium both 
in terms of structural as well as functional features. 
Hence dispersion relation in this unit region completely 
describes itself for the entire medium. This gives rise to 
Band structure and the region in inverse space 
coordinates (to match the dimension of the wave 
vector) is the first Brillioun zone. 
 
Suitable structural modulation can achieve the desired 
propagation features in the medium and even provide 
for Band gap i.e the range of frequency for which light 
cannot propagate through the medium. Photonic 
crystals are used on millimetre periodic scale for 
microwave range applications and on micro or nano 
metre scale for optical range of electromagnetic waves.  

 
A 2D photonic crystal has refractive index variation in 
a 2D plane, where as in the direction normal to this the 
refractive index remains constant. Common examples 
of 2D photonic crystals are square and triangular lattice 
of dielectric rods embedded in background material of 
lower dielectric constant and triangular lattice of air 
holes in dielectric slab. Suitable modification in this 
periodic refractive index pattern provides desired 
control over the behaviour and propagation of light.  

 
2. Theory  
The photonic crystals with series of point defects and 

The band structures of 2D photonic crystals with line 
defect for both square lattice and triangular lattice 
structures have been computed by using PWEM 
method. The band structure is the dispersion relation 
between the frequency of the electromagnetic wave and 
the wavevector k it assumes inside the crystal medium. 
A real k-number indicates that the particular frequency 
is allowed inside the medium. An imaginary k-number 
indicates that the particular frequency is not allowed. 
This dispersion relation is obtained by solving the 
following master equation 

line defects can be used as waveguides with their own 
modes. 

                (1) 

The above equation is derived from the two curl 
equations from the set of Maxwell equations for 
dielectric media. 
In this equation, є(r) is the periodic dielectric function; 
as such the Bloch periodicity theorem is applied for the 
periodic dielectric constant variation and due to that 
electromagnetic field distribution in the medium is also 
periodic. 
In the above equation  is the magnetic distribution 
which is periodic, ω represents the frequency of 
permissible mode and it is calculated as , where k 
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is the wave vector of the medium and n is the nth 
frequency value (nth mode) associated with that k.  
 
In this paper the numerical method we have used for 
analysis is Plane Wave Expansion Method (PWEM) 
which is a frequency domain technique based on 
Bloch’s theorem of periodicity. It consists of expanding 
both the periodic dielectric functions and 
electromagnetic field solution in infinite series of 
uniform plane waves and thus reducing the Boundary 
Value Problems (BVP) to a set of Eigen value 
equations. 
 
Photonic Band Gap structures are scalable in terms of 
the period of the lattice. As such, the parameters 
describing their features are conveniently expressed as 
normalised quantities i.e. in dimension less units. They 
can be expressed in relevant physical units by 
multiplying them with the corresponding conversion 
factor. 
 
For the band structure k-points are sampled from the 
first Brillouin zone of the respective lattice structure 
which can further be reduced to the points on the 
contour of irreducible Brillouin zone.  
 
2. Design of the lattices with line defect 
 
In this paper we consider the 2D photonic crystal 
structures consisting of square and triangular lattice of 
dielectric rods in air. Line defects in both the structures 
have been created by reducing the radius of dielectric 
rods along one particular row to half the regular value 
and then varying the dielectric constant along that row 
as shown in Fig. 1.   
                    

    
 

Figure 1. Square and triangular lattice 
configurations with Line defects respectively 

 
Our structures are infinitely long rods in air in direction 
normal to the plane of periodicity, approximating that 
the modes are confined in periodic plane due to this 
infinite height. The periodicities of both square and 
triangular lattice structures are 1 each and the dielectric 
constant of the normal rods is 12.  
For the square lattice case, the radius of normal rods is 
0.19. The radius of defect rods is set to 0.095 and their 

dielectric constant is varied between 1 and 16 in steps 
of one. 
For the triangular lattice case, the radius of normal rods 
is 0.18. The radius of defect rods is set to 0.09 and their 
dielectric constant is varied between 1 and 16 in steps 
of one as before.  

In integrated photonic circuits this line defect serves as 
the waveguide. 

 
3. Band structure of square and triangular 
lattice structures with line defect 
 
For the band structure concerning the line defect the k-
points have been sampled along ΓX direction in the 
square lattice structure and ΓK direction in the 
triangular lattice structure between 0 and 0.5 
(normalized units) and interpolated with 15 equidistant 
points as shown in Fig. 2.  The frequency is also 
normalized. 
 
 

 
Figure 2.  Brillouin Zones for square and 

triangular lattices with k-paths for line defect 

The band structure for the line defect of the two lattice 
structures are shown below in Fig.3 and Fig.4 . The red 
curve is the line defect mode and in integrated photonic 
circuits this represents the waveguide mode where this 
line defect serves as the waveguide. 

 

Figure 3. TM Band structure for square lattice 
with line defect 
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Figure 4. TM Band structure for triangular 

lattice with line defect 
 
4. Parameters computed and analysed 
 
4.1. Line Defect Mode 
 
4.1.1 Air mode, Dielectric mode and Line defect 
(waveguide) mode 
The band structures for both square lattice and 
triangular lattice cases have been obtained with 
variation in index of k-points along the line defect. As 
shown in Fig. 3 and Fig. 4 these band structures have 
air modes (above the band gap region) and dielectric 
modes (below the band gap region) separated by a line 
defect mode of permissible frequencies in the band gap 
region, which is represented by the thick red curve in 
both square as well as triangular lattice band structures. 
To get the actual values of permissible frequencies and 
k-points we need to multiply frequency and k-point 
with  and     respectively as conversion factor. 
Here ‘a’ stands for period of the lattice and ‘c’ is the 
speed of light in free space. 
 
4.1.2. Upper frequency limit 
This is the maximum permissible frequency of the line 
defect mode (Waveguide mode). The variation of this 
parameter with defect dielectric constant has been 
plotted for both square lattice as well as triangular 
lattice structures as shown in Fig. 7.  
 
4.1.3. Lower frequency limit  
This is the minimum permissible frequency of the line 
defect mode (Waveguide mode). The variation of this 
parameter with defect dielectric constant has been 
plotted for both square lattice as well as triangular 
lattice structures as shown in Fig. 8.  
 
4.1.4. Mid frequency 
This is the average (arithmetic mean) of upper limit 
(maximum) and lower limits (minimum) permissible 
frequencies. This parameter has also been analysed by 

varying defect dielectric constant for both square lattice 
as well as triangular lattice structures as shown in  
Fig. 9  
 
4.1.5. Frequency span 
This gives the interval of frequencies of the permissible 
line defect mode (Waveguide mode), which is the 
difference between Upper frequency limit and Lower 
frequency limit. The variation of frequency span with 
defect dielectric constant has been analysed for both 
square as well as triangular lattice structures as shown 
in  Fig. 9. 
 
4.1.6. Frequency span as a fraction of band gap  
This gives the interval of frequencies in line defect 
mode (Waveguide mode) relative to band gap of 
photonic crystal without defect as ratio. The variation 
of this parameter with defect dielectric constant has 
been analysed for both square lattice as well as 
triangular lattice structures as shown in Fig. 10. 
 
 4.2. Group Velocity  
The concept of group velocity is important for 
understanding light wave propagation and quantifying 
dispersion. It the speed of the light pulse with a narrow 
frequency spread about central frequency. It is 
mathematically defined as . In this paper group 
velocity variation at each k-point and also for each 
frequency value for both square lattice as well as 
triangular lattice have been shown for different defect 
dielectric constants. It has been expressed in the 
normalized unit and to get the actual value it needs to 
multiply with c, the velocity of light in free space.  

4.3. Effective Refractive Index 
This dimensionless parameter measures the resistance 
offered by the optical medium to electromagnetic wave 
propagation. As such it is measured as the ratio of 
velocity of light in free space to the velocity in that 
medium. It is function of frequency. For the line defect 
mode having the collection of continuous frequency 
values in its frequency span it can be expressed as the 
ratio of velocity of light in free space to the group 
velocity at the particular frequency and its k-point. i.e. 
it is inversely proportional to the group velocity of the 
medium. In this paper the variation of effective 
refractive index with k-point and with frequencies of 
the line defect mode has been analysed for different 
defect dielectric constants. As the group velocity has 
been expressed normalised so its inverse directly gives 
the effective index. 
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4.4. Group Velocity Dispersion (GVD) 
This parameter is also important to analyse dispersion 
of the propagation mode in its medium. It is 
mathematically defined as .  Here, we analyse GVD 
with the variation of k-point and defect mode 
frequencies for both square lattice as well as triangular 
lattice structures, for different defect dielectric constant 
values. A conversion factor of  has to be multiplied 
with the normalised values to express them in the 
relevant physical units. 
 
5. Computational Results  
The line defect modes (waveguide modes) for both 
square lattice and triangular lattice structures have been 
obtained for different defect dielectric constants. The 
Upper frequency limit, Lower frequency limit, 
Frequency span, Frequency span as a fraction of band 
gap of the structure are extracted  from waveguide 
mode characteristics for different defect dielectric 
constant values. 
Group velocity and GVD variations have been plotted 
against k-points and frequencies for both square lattice 
and triangular lattice structures. These parameters are 
calculated by converting the differential equations into 
suitable difference equations. 
In band structure diagrams of square lattice and 
triangular lattice structures with the line defect, the line 
defect modes are represented by thick red curves as 
against the thin and fading appearance of the air modes 
and dielectric modes as shown in Fig. 3 and Fig. 4. In 
the analysis the other parameters like group velocity, 
GVD and effective refractive index characteristics 
(corresponding to different defect dielectric constant 
values) are represented by curves of different colours. 
The values of the defect dielectric constants are also 
indicated on each plot. 
 

 
Figure 5. Single line defect modes for square 
lattice for different defect dielectric constants 

 

 
Figure 6. Single line defect modes for 

triangular lattice for different defect dielectric 
constants 

 
We observe, in the case of square lattice and triangular 
lattice structures, with increase in defect dielectric 
constant the line defect modes are continuously moving 
downwards (decrease in frequency all k-points) 
towards dielectric modes. 
 
This defect mode divides the band gap region into two 
parts. The upper region between the air mode and the 
defect mode with no allowed frequency mode in lattice 
increases with increase in defect dielectric constant. 
Similarly the lower region between the defect mode 
and the dielectric mode with no allowed frequency 
mode decreases with increase in defect dielectric 
constant. 
 
For square lattice structure, there is overlap of 
frequencies of the waveguide modes for defect 
dielectric constant values of 1 to 9 as shown in Fig. 5. 
This happens at higher index of k-points. In this range 
of defect dielectric constant the group velocity (  ) 

becomes negative. 
 
Unlike in the case of square lattice, in the case of 
triangular lattice the group velocity is positive for all k-
points since the waveguide mode curves are non 
decreasing curves i.e. as the k-point is increased the 
permissible normalized frequency does not decrease as 
shown in Fig. 6. 
 
The normalized frequency values vary from 0.25 to 
0.44 for all these waveguide modes for unity period and 
they vary around 0.35 mid frequency value. Hence, for 
0.5 µm period they vary around 0.7 normalized value 
i.e. wavelength value lies around 3rd optical window of 
1.55µm. 
 
For triangular lattice structure the normalized 
frequency values vary from 0.3 to 0.48 for all 
waveguide for unity period and vary around 0.39 
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frequency value. Hence for 0.5µm period they vary 
around 0.8 normalized values, i.e wavelength value lies 
around 2nd optical window of 1.33µm. 
Frequency distribution of waveguide modes for 
different structures 
 

 
Figure 7.  Variation of Upper frequency limit 

against defect dielectric constant 
 
For triangular lattice the parameter Upper           
frequency limit decreases monotonically and smoothly 
with increase in defect dielectric constant and this 
decrease is almost linear between defect dielectric 
constant values 7 to 16 with slope of -0.0085 as shown 
in Fig. 7. 
 
In case of triangular lattice the maximum value of 
Upper frequency limit i.e. 0.474 occurs at defect 
dielectric constant 1 and minimum value at dielectric 
constant 16, i.e. 0.365.  
 
In case of square lattice, Upper frequency limit is 
monotonically decreasing with increase in defect 
dielectric constant. But at defect dielectric constant 9 
there is sharp change in the decrease pattern. Between 
defect dielectric constant 9 and 16 this decrease is steep 
and almost linear with slope of -0.101 as shown in Fig. 
7. It has maximum value at defect dielectric constant 1 
i.e. 0.44(in normalized frequency unit) and minimum 
value at defect dielectric constant 16 i.e. 0.362. 
 

 
Figure 8. Variation of Lower frequency limit 

against defect dielectric constant 

In case of triangular lattice structure, Lower frequency 
limit is monotonically decreasing and this decrease is 
linear with slope of -0.003. The maximum value at 
defect dielectric constant value 1 is 0.347 and the 
minimum value at defect dielectric constant value 16 is   
0.3 as shown in Fig. 8. 
 
In case of square lattice structure, Lower                              
frequency limit is approximately linear between defect 
dielectric constant values 1 and 16 with slope of -
0.0027. The characteristics are similar to that of 
triangular lattice structure as shown in Fig. 8. 
 

 
Figure 9. Variation of Mid frequency and 
frequency span against defect dielectric 

constant 
 
In case of triangular lattice, frequency span 
characteristics are relatively flatter and it decreases 
monotonically with increase in defect dielectric 
constant. The curve is approximately linear between 
defect dielectric constant 6 and 16 with slope of -
0.0055 as shown in Fig. 9. 
 
In case of square lattice structure, frequency span 
characteristics increases monotonically between defect 
dielectric constants 1 and 9 and decreases almost 
linearly from defect dielectric constants 9 to 16 with 
slope of -0.0074 as shown in Fig. 9. 
 
For triangular lattice structure, the parameter mid 
frequency decreases slowly between defect dielectric 
constant values 1 and 4 and there onwards decreases 
more rapidly as shown in Fig.9. The characteristics are 
almost linear between defect dielectric constants 6 and 
16 with slope of -0.0058. 
 
In case of square lattice structure, mid frequency shows 
irregular behaviour between defect dielectric constants 
1 and 9. This is due to the nature of Upper frequency 
limit between defect dielectric constants 1 and 9. The 
curve is decreasing almost linearly between defect 
dielectric constants 9 and 16 with slope of -0.006 as 
shown in Fig.9. 
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Figure 10. Variation of fraction of frequency 

span against defect dielectric constant 
 
The parameter fraction of frequency span is simply 
normalized version of frequency span characteristics 
obtained. In case of triangular lattice structure it has 
maximum value 0.655 at defect dielectric constant 1 
and minimum value 0.34 at dielectric constant 16 as 
shown in Fig. 10. In case of square lattice structure it 
has maximum value 0.97 at defect dielectric constant 9 
and minimum value 0.64 at defect dielectric constant 
16. Unlike triangular lattice square lattice waveguide 
modes utilise more of band gap.  

 
Variation of Group Velocity with k-point: 
 
In case of triangular lattice structure group velocity 
monotonically increases up to k-point 11 or in some 
cases up to k-point 12 and then monotonically 
decreases i.e. the maxima lies at k-point 11 and 12. The 
monotonically increasing portion of these 
characteristics is relatively flatter and the decreasing 
portions are relatively steeper. The variation of group 
velocity with k-point is almost linear between k-points 
3 and 9 for defect dielectric constant values 1 to 9. For 
defect dielectric constant 10 to 16 this variation is not 
linear as shown in Fig. 11. 
 

 
Figure 11. Variation of group velocity of 

triangular lattice structure against index of k-
point for different defect dielectric constants 

 

In case of square lattice structure similar behaviour is 
observed. But in this case negative group velocity is 
found for defect dielectric constant values 1, 3, 5, 7 
corresponding to the region where waveguide modes 
overlap in frequency and they start decreasing there 
onwards, as shown in Fig. 12.  The peak values of 
square lattice curves are always greater than those of 
triangular lattice curves for all defect dielectric 
constant. 
 

 
Figure 12. Variation of group velocity of square 

lattice structure against index of k-point for 
different defect dielectric constants 

 
Variation Group velocity with frequency: 
 
Group velocity in square lattice structure increases with 
frequency for a particular defect dielectric constant 
monotonically and reaches its respective maxima and 
then decreases monotonically (except for negative 
group velocity cases for dielectric constants 1,3,5); the 
rise being comparatively flatter and the fall being 
steeper as shown in Fig. 13. The maxima (maximum 
value) of all these group velocity curves decrease with 
defect dielectric constant i.e. the lowest defect 
dielectric constant has the highest peak value.  

 
Figure 13 Variation of group velocity of square 
lattice structure against normalized frequency 

for different defect dielectric constants 
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In case of triangular lattice structure group velocity 
curves monotonically increase till their respective 
maximum value and then monotonically decrease, 
where this decrease is relatively steeper. This is 
observed for all defect dielectric constant as shown in 
Fig. 14. The maximums of all these group velocities 
decrease with defect dielectric constant value. The 
behaviour here is similar to square lattice structure 
except that there are no negative group velocity values. 
 

 
Figure 14 Variation of group velocity of 

triangular lattice structure against normalized 
frequency for different defect dielectric 

constants 
 
Variation of Effective refractive index with k-point: 
 
In case of triangular lattice effective index decreases 
very sharply initially with k-point for almost all defect 
dielectric constant and then shows a very flat variation 
with k-points between 4 and 14. Further they rise very 
sharply at the extreme k-points 15 to 17. In the flatter 
region of variation the effective index increases with 
increase in defect dielectric constant as shown in Fig. 
15. 
 

 
Figure 15. Variation of effective refractive 

index of triangular lattice structure against 
index of k-point for different defect dielectric 

constants 
 
Just like the triangular case the similar variation pattern 
is observed in case of square lattice also as shown in 

Fig. 16. On the steep rise at higher k-point anomalous 
behaviour is observed for defect dielectric constant 
values from 1 to 8 due to their anomalous pattern in 
waveguide mode characteristics as shown in Fig. 5. 
Here also, in the flatter region effective index increases 
with increase in dielectric constant. 
 

 
Figure 16a.  Variation of effective refractive 

index of square lattice structure against index 
of k-point for different defect dielectric 

constants 
 

 
Figure 16b.  Variation of effective refractive 

index of square lattice structure against index 
of k-point for different defect dielectric 

constants resolved in the Y-axis  range of 0 to 
15 

 
Variation of Effective refractive index with 
frequency: 
In case of triangular lattice, for extreme values of 
frequencies (lower and upper ends) of any waveguide 
mode the effective refractive index is high and its 
variation is steep.  In between these regions (either 
ends) the values of effective index is low and the 
variation is relatively flat. The above two observations 
are in confirmation to the group velocity variations as 
shown in Fig. 17a. Effective refractive index can never 
be negative for triangular lattice structure. A resolved 
plot (Fig. 17b) shows the refractive index variation in 
the flatter region. This variation is very small for any 
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curve with frequency values and also relative to 
themselves. 
 

 
Figure 17a. Variation of effective refractive 
index of triangular lattice structure against 
normalized frequency for different defect 

dielectric constants  
 
 

 
Figure 17b. Variation of effective refractive 
index of triangular lattice structure against 
normalized frequency for different defect 

dielectric constants resolved in Y-axis 0 to 12 
 
 
In the case of square lattice structures, with increase in 
frequency for all defect dielectric constant cases 
effective index undergoes very steep decrease and then 
shows flat variation with low values as shown in Fig. 
18a. We find anomalous behaviour at the right extreme 
of frequency axis for defect dielectric constants 1 to 8, 
where as for higher defect dielectric constants i.e. 9 to 
16 the behaviour of the curve is normal and is similar 
to that of triangular lattice structure. Because of this 
anomalous behaviour effective refractive index shoots 
up to a very high value for defect dielectric constants 1 
to 8 and then plunges below zero to a small negative 
value in the right extreme region  
(Fig.   18b). 
A resolved plot (Fig. 18c) shows the refractive index 
variation in the flatter region. This variation is very 

small for any curve with frequency values and also 
relative to themselves. 
 

 
Figure 18a Variation of effective refractive 
index of square lattice structure against 
normalized frequency for different defect 

dielectric constants 
 

 
Figure 18b. Variation of effective refractive 

index of square lattice structure against 
normalized frequency for different defect 

dielectric constants resolved in Y-axis range 0 
to 50 

 

 
Figure 18c. Variation of effective refractive 

index of square lattice structure against 
normalized frequency for different defect 

dielectric constants resolved in Y-axis range 0 
to 10 
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Variation of GVD with k--point: 
 
In case of square lattice structure group velocity 
dispersion slightly increases up to k-point 3 and there 
onwards it remains almost flatter as shown in Fig. 19, 
up to k-point 9. Thereafter it starts decreasing gradually 
for modes corresponding to defect dielectric constants 9 
to 16. It falls steeply to a minimum value and 
subsequently rises steeply for modes corresponding to 
defect dielectric constants 1 to 8.  
 

 
Figure 19. Variation of Group velocity 

dispersion of square lattice structure against 
index of k-point for different defect dielectric 

constants 
 

In triangular lattice structure almost similar behaviour 
is observed, but GVD variation is not as flat as in the 
case of square lattice structure between k-points 3 and 9 
and thereafter it decreases smoothly for all line defect 
modes. Unlike in the case of square lattice structure the 
behaviour of curves is uniform as shown in Fig. 20. 
 

 
Figure 20. Variation of Group velocity 

dispersion of triangular lattice structure 
against index of k-point for different defect 

dielectric constants 
 
 

 
 

Variation of GVD with Frequency: 
 
For square lattice structure GVD increases initially (at 
lower end of frequency values) with frequency, later it 
shows flat nature up to few intervals of frequency 
thereafter it starts decreasing at higher frequencies as 
shown in Fig. 21. This decrease is gradual for the 
defect dielectric constant of 9 to 16 and steeper for the 
defect dielectric constant of 1 to 8 followed by a steep 
shoot-up at the upper end of frequency values.  
 

 
Figure 21. Variation of Group velocity 

dispersion of square lattice structure against 
normalized frequency for different defect 

dielectric constants 
 

In case of triangular lattice structure GVD shows 
similar nature, but there is some irregularity initially 
and there onwards it remains decreases monotonically 
over some range of frequencies and then it starts rising 
at the upper end of frequency values as shown in Fig. 
22. The range of frequencies of flatter response is not 
uniform in both square lattices as well as in triangular 
lattice. 
 
 

 
Figure 22. Variation of Group velocity 

dispersion of triangular lattice structure 
against normalized frequency for different 

defect dielectric constants 
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