
Various Ways of Parallelization of Sequential Programs

Ankita Bhalla

M.Tech (CSE)

GNDU Amritsar

Abstract

Parallelization is becoming necessity of parallel

computing field. The main reason of parallelization is

to compute large and complex program as fast as

possible. However it is difficult to parallelize the

sequential program. This paper describes about loop

parallelization that allows parallelizing the loops of

the programs as we know loops take most CPU time.

This paper discusses about speculative parallelism in

which program is parallelized while maintaining its

sequential order. Some tools are briefly discussed

like HydraVM and PTRAN. This paper describes

about variant based parallel execution of sequential

programs which introduces concept of multiple

variants in a sequential programs.

Keywords:HydraVM, Manual Parallelism,

Speculative Parallelism, Loop Parallelism, PTRAN,

parallelization tools, Variant based competitive

parallelism.

1. Introduction

Sequential program is defined as a set of instructions

in a serial fashion. Instructions are executed line by

line one after another. It takes so much time to

compute large sequential programs which leads to

performance degradation of computer systems.

Parallelism is one of the key means for improving the

performance of computer systems. Parallelism in

programs is a fundamental characteristic of the

program that denotes the independence of

computations in a program. Parallelism provides the

ability to perform several computations (instructions)

in a program concurrently because of their

independence. Parallelism exploits the concurrency.

2. Need of Parallelization

The main reason of parallelization a sequential

program is to run the program faster. The need of

parallel approach arises because some problems were

too costly to be solved with the classical approach

and we need to find the results as soon as possible.

The criteria for evaluating the performance of a

parallel program is the speedup used to express how

many times the parallel program works faster than

the sequential one, where both programs are solving

the same problem. [1] The speedup formula is

 S= Ts/Tp

Where

Ts is the execution time of the fastest sequential

program for our problem

Tp is the execution time of the parallel program used

to solve the same problem. [1]

2.1 Amdahl’s law

According to the Amdahl law, if we execute the

parallel program on parallel processor, some portion

of it cannot be executed parallely. That portion has to

be executed sequentially by single processor. Let α

be the portion which cannot be parallelized. The rest

of (1 - α) will be executed in parallel.Here N is

number of processing elements. Speed up is:

S= 1 / (α + ((1- α)/N))

In Amdahl‟s law, problem size remains fixed. If we

increase the number of processors then speed up as

well as efficiency decreases. This law focuses on

execution of program must be completed as fast as

possible.

2.2 Gustafson’s Law

This law is correlated with Amdahl‟s law. It basically

works on limitation of Amdahl‟s law. Amdahl‟s law

is limited to fixed problem size. Gustafson‟s law

states that as we increase the number of processing

elements in parallel system problem size must

increases but the execution time of the problem

remain constant. This law focuses on scalability of

problem size having constant execution time. Speed

up given by this law is

S(P) = P- α(P-1)

3223

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11044

P is number of processing elements and α is portion

that has to be executed sequentially.

2.3 Sun Ni’s Law

Sun Ni‟s law focuses on memory, which is associated

with every processor, should be scaled up. This law

treats Amdahl‟s law and Gustafson law as special

cases in order to find memory bounded speed up. In

this law degree of parallelism plays very important

role. Here works performed by processors are

considered very carefully. This law also includes

communication overhead associated with processor

in its formula.

3. Parallelization of a Sequential Program

In this section various techniques which are used to

parallelize the sequential programs are briefly

described with their limitations.

3.1 Manual Parallelization

If the user decides to manually parallelize his

program, he can freely decide which parts have to be

parallelized and which not. This is called manual

parallelization. Here user must be expert programmer

that significantly involves in partitioning of the

computations into multiple threads. He has to

explicitly define the desired communication

mechanisms (message passing or shared memory)

and synchronization methods (locks, barriers,

semaphores and so on) in the parallel program. When

multiple threads must concurrently operate on the

same data, it is often necessary to use locks to avoid

race conditions between the threads [2].

Limitations

 This technique requires experts. So it is restricted

techniques.

 It is good for small programs but for large and

complex programs or applications it fails at some

points. As we all know human are more prone to

do mistakes.

3.2 Complier Automatic Parallelization

The easiest way to parallelize a sequential program is

to use a compiler that detects, automatically or based

on the compiling directives specified by the user, the

parallelism of the program and generates the parallel

version by finding interdependencies in the source

code. The automatically generated parallel version of

the program could be executed on a parallel system.

The user does not have to be concerned about which

part of the program is parallelized because the

compiler will take such a decision when the

automatic parallelization facility is used. [2]

Limitations

 User has a very limited control over

parallelization.

 In a complex program that contains nested loops,

procedure calls etc., it is very difficult to find and

to analyze the dependencies which restricts the

capabilities of such compilers.

3.3 Loop Parallelization

Parallelizing loops is one of the most important

challenges because loops usually spend the most

CPU time even if the code contained is very small. A

loop could by parallelized by distributing iterations

among processes. Every process will execute just a

subset of the loop iterations range. Usually the code

contained by a loop involves arrays whose indices are

associated with the loop variable. This is why

distributing iterations means dividing arrays and

assigning chunks to processes.

If data affected by the inner loop are then referenced

in the main loop, we need to synchronize data just

after the end of the inner loop in order to be sure that

the values accessed by the main loop are the updated

one. The data synchronization was added just after

the second loop end and the inner loop was

distributed over multiple processes and processors.

Every process will execute just a subset of the inner

loop iterations range. Using the partial parallelization

of a loop, we can minimize the load imbalance but

the communication overhead will be higher as result

of synchronization. [1]

For example in case of single loop, if I want to print

“hello World” say 500 times or even more in

MATLAB environment, it takes more time if it

execute sequentially, but if it execute parallely on

multiple processor it take very less time . Suppose it

executes on MATLAB Parallel Computing toolbox

which solves the problem using multicore processors,

GPUs and computer clusters. However this toolbox

provides 12 workers by default that works

concurrently.

3224

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11044

In MATLAB, Sequential program code for print

“hello World” is:

For i: 1 : 500

Disp(„Hello World‟)

End

In MATLAB Parallel Computing toolbox, code for

print “hello World” on multiple workers is:

Matlabpool local 10 \\ to start 10 workers

Parfori=1 : 500 \\ parfor is parallel for loop

Disp(„Hello World‟)

End

Matlabpool close \\ close matlab workers

However program running on multiple works take

less time. In this loop is distributed among multiple

workers. Workers run concurrently and produce

result frequently as compared to run same program

sequentially.

Limitations

 Loop Parallelism concentrate mainly concentrate

on for loops.

 This approach is not good if sequential programs

consist of very complex nested loops.

 Here we need to take care of the partials results of

the loops carefully. So synchronization plays vital

role in this approach.

4. Parallelization Tools

Nowadays trend is moving from sequential programs

to parallel programs. As sequential programs are time

consuming so we need to convert them into parallel

programs by rewriting them. As we know in order to

create parallel programs, parallel programming is

required. Parallel programming must be portable as it

has to run efficiently on heterogonous systems. To do

this compiler of parallel programming has to do

restructuring of program which is time consuming

task. Here I m going to discuss briefly about some

ready-made tools that convert sequential programs

into parallel programs by extracting parallelism from

sequential programs. These are explained as follows:

PTRAN: PTRAN (Parallel TRANslator) is

parallelizing system at IBM's T.J. Watson Research

Center which converts the legacy sequential Fortran

program into parallel Fortran programs. It is source to

source complier. This system mainly concern with

Fortran written programs which make this tool very

specific for converting the legacy sequential program

into parallel program. But nowadays frotran is used

very less as we are now moved towards 4GL.

PTRAN is seldom used for parallelization of

sequential program. [3]

HydraVM: HydraVM is a virtual machine that

extracts parallelism automatically from sequential

programs. A set of techniques including code

profiling, data dependency analysis, and execution

Analysis are applied on sequential code (at the byte

level). HydraVM is built by extending the Jikes

RVM. Jikes RVM (Research Virtual Machine)

provides a flexible open testbed to prototype virtual

machine technologies. HydraVM works in three

phases.

1. The first phase focuses on detecting parallel

patterns in the code by monitoring code execution

and determining memory access and execution

patterns. This may lead to slower code execution due

to inspection overhead. Information collected here is

stored in Knowledge Repository.

2. The second phase starts after collecting enough

information in the Knowledge Repository about

which blocks were executed and how they access

memory. The Builder component uses this

information to split the code into superblocks, which

can be executed in parallel. New version of the code

is generated and is compiled by the Recompilation

component. The TM Manager manages memory

access of the execution of the parallel version, and

organizes transaction commit according to the

original execution order. The manager collects

profiling data including commit rate and conflicting

threads.

3. The last phase is tuning the reconstructed program

based on thread behavior (i.e., conflict rate). The

Builder evaluates the previous reconstruction of

superblocks by splitting or merging some of them,

and reassigning them to threads. The last two phases

work in an alternative way till the end of program

execution, as the second phase represents a feedback

to the third one. [4]

MATLAB Parallel Computing Toolbox:

MATLAB Parallel Computing toolbox solves the

problem using multicore processors, GPUs and

3225

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11044

computer clusters. Parallel computing toolbox creates

multiple workers (called „labs‟ or computations

engines) on local machine. By default Matlab provide

12 workers to execute applications locally on a

multicore desktop. Without changing the code, we

can run the same application on a computer cluster or

a grid computing service (using MATLAB

Distributed Computing Server which we need to

purchase). Matlab parallelize the programs or

applications without using CUDA or MPI

Programming. This toolbox allow to us to run

sequential as well as parallel program. However to

run parallel program on multicore processors firstly

we must use matlabpool command to open as many

workers we want (maximum workers are 12).

5. Speculative Parallelization Verses

Variant based Competitive Parallel

Execution

First of all speculative parallelization is discussed and

then variant based parallelism is discussed briefly.

5.1 Speculative Parallelization

Speculative parallelization attempts to use the many

processing cores by creating concurrency from a

program but also maintaining the sequential program

order. It overcomes the limitations of traditional

parallelization by creating threads that are composed

from the program and speculatively executing them

in parallel. Additional hardware support is used to

determine threads that violate dependencies and

squash them, and to enforce sequential program order

of concurrently executed speculative threads. As

threads are use here it is also known as Thread Level

Speculative parallelism.

Program Demultiplexing (PD, in short) is an

execution paradigm based on speculative

parallelization, for sequential programs. In sequential

execution, the call site of a method represents the

beginning of execution of that method, and happens

on the same processing core as the program.

However, in PD, the execution of a method occurs on

another available processing core, speculatively,

before the call site is reached in the program. Several

such speculative executions of methods create

concurrency in a program. The speculative execution

is usually invoked after the method is ready, i.e. after

its data dependencies are satisfied for that execution

instance. Speculative threads in PD are composed of

methods. Methods allow programmers to decompose

a problem into several subtasks and enable them to

write a complex and lengthy program.

Figure 1. Program demultiplexing overview

The sequential execution on the left represents

execution of methods A, B, and D. Method C is

called inside D. On the right side is the PD based

execution. The methods are spawned for speculative

execution. Method D uses the speculative execution

of method C. Methods A, B, and D are committed

when the call site in the program is reached. The

speculative executions do not violate any data

dependencies and this is indicated by the tick mark

on the bottom right of the method‟s box. [5]

Limitations

 It may happen that the core gets destruct on which

any thread speculatively executing. It may harm

the execution of the thread where it requires.

 This approach is difficult to apply for complex

programs which involve nested loops,

interdependent code and so on.

5.2 Variant-based Competitive Parallel

Execution

Competitive parallel execution (CPE) is a model to

adapt and execute existing sequential programs to

increase their performance on multi-processor and

multi-core systems. The fundamental idea of CPE is

to include variants of one or multiple regions of a

sequential program and to let these variants compete

at program execution time.CPE is a technique for

modifying and executing existing sequential

applications to increase their performance on parallel

systems. Competitive parallel execution (CPE) is a

simple yet attractive technique to improve the

performance of sequential programs on multi-core

3226

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11044

and multi-processor systems. The central idea of CPE

is to facilitate the introduction of multiple variants for

parts of a program, where different variants are suited

for different run-time conditions.

A sequential program is transformed into a CPE-

enabled program by introducing multiple variants for

parts of the program. The performance of different

variants depends on runtime conditions, such as

program input or the execution platform, and the

execution time of a CPE-enabled program is the sum

of the shortest variants. The purpose of creating

variants is to make the program adaptive to different

run-time conditions. Variants compete at run-time

under the control of a CPE aware run-time system.

The run-time system ensures that the behavior and

outcome of a CPE-enabled program is not

distinguishable from the one of its original sequential

counterpart.

Figure 2 illustrates the general execution model of a

CPE enabled program with an example. The

execution alternates between sequential phases,

where only a single variant is running, and

competitive phases, where multiple variants are

running in parallel. The example program in Figure 2

executes two sequential and three competitive phases.

Variants compete against each other in every

competitive phase. At the conclusion of a competitive

phase the program state of the winning variant is

synchronized with all its peers. The execution then

proceeds to the succeeding competitive or sequential

phase. [6]

Figure 2. Execution Control of CPE

Figure 2: Example execution control flow of a CPE

enabled program with two sequential and three

competitive phases. Two or three variants compete in

each competitive phase. A competitive phase ends

upon completion of a variant, and the program state

is synchronized to the state of this winner. The

behavior and semantics of a CPE-enabled program

must not be distinguishable from a sequential

execution, in which only a single variant runs in each

phase. The run-time system must provide two

isolation properties to guarantee the semantical

equivalence with the original sequential program:

1. The effects of a variant must be contained with

respect to competing variants. A change in program

state of one variant must thus not be observable by

other variants.

2. The set of I/O operations performed by the CPE

enabled program and the order in which they are

performed must not have any side-effects that differ

from a sequential execution of the program.

CPE model is not only restricted to flat competitive

phases but also supports nested competitiveness.

Figure 3. Example for a nested competitive

execution

Variants A and B compete at the outer nesting level.

Variant B in turn executes a loop where two variants

B1 and B2 repeatedly compete with each other for

each loop iteration. The inner competitive execution

between B1 and B2 has no effect on the execution of

variant A. In turn, if A reaches the outer

synchronization point before B, the latter, including

potentially executing variants B1 and B2, will be

interrupted, and the program execution proceeds from

the state of A.[6]

 Two different approaches to transform an existing

sequential program into a CPE-enabled program:

 Computation-Driven Competitiveness

 Compiler-Driven Competitiveness

Computation-Driven Competitiveness: Here

variants which are to be executed are present in the

program. It is a simple and straightforward

parallelization of heuristic algorithms. In this the

process of enhancing a sequential program is a

straightforward process. Here variants are executed in

isolation with respect to each other. Thus process

does not require any reasoning about data sharing,

dead-locks and other difficulties intrinsic to

concurrent programming. Also, the process does not

3227

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11044

require detailed knowledge of the inner-workings of

the original program with all its data structures and

algorithms. [6]

Compiler-Driven Competitiveness: Here variants of

parts of a program are generated by selecting

different optimization strategies during compilation.

Compiler-driven CPE exploits the fact that many

optimizing compilers are unable to identify the best

optimization settings for many programs. Compiler-

driven CPE therefore employs the compiler to

generate variants for frequently executed parts of the

program by applying different optimization strategies

upon compilation. [6]

6. Conclusions

This paper briefly discusses the ways of parallelizing

the sequential programs. As compared to other

approaches of parallelizing the sequential program,

variant based competitive parallel execution is better.

It can be beneficial for small programs as well as for

large and complex programs. Unlikely in Speculative

Parallelism where speculatively execute the

independent part but that part may not be optimized

and also its execution. But in this approach by using

Complier driven competitiveness automatic select the

best and optimized independent part called variant

and its execution gives optimized results. This

approach gives more correct results as compared to

other approaches. Also, instead of writing the parallel

version of sequential program from scratch, the

corresponding sequential program is converted into

parallel program by using various parallelization

techniques. We can correlate with re-engineering.

6. References

 [1] AlecuFelician, “How To Parallelize A Sequential

Program”, 2006

[2] Ben Hertzberg, “Runtime Automatic Speculative

Parallelization Of Sequential Programs”, November 2009

[3]Wilson Cheng-Yi Hsieh “Extracting Parallelism From

Sequential Programs”, 1988

[4] Mohamed M. Saad, Mohamed Mohamedin,

AndBinoyRavindran “Hydravm: Extracting Parallelism

From Legacy Sequential Code Using STM”, 2010

[5] SaisanthoshBalakrishnan “Program Demultiplexing:

Data-Flow Based Speculative Parallelization Of Methods

In Sequential Programs”, 2007

[6] Oliver Trachsel, Thomas R. Gross “Variant-Based

Competitive Parallel Execution Of Sequential Programs”,

2010

3228

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11044

