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                           Abstract  
In this work a dynamic model of a planetary gear 

transmission is developed to study  the sensitivity of  

the natural frequencies and vibration modes to 

system parameters in perturbed situation. 

Parameters under consideration include component 

masses ,moment of inertia , mesh and support stiff 

nesses .The model admits three planar degree of 

freedom for planets ,sun, ring, and carrier. Vibration 

modes are classified into translational, rotational 

and planet modes .Well-defined modal properties of 

tuned (cyclically symmetric) planetary gears for 

linear ,time-invariant case are used to calculate 

eigensensitivities  and express them in simple 

formulae .These formulae provide efficient mean to 

determine the sensitivity to stiffness ,mass and inertia 

parameters in perturbed situation 

1. Introduction  
    Planetary gearboxes are usually used  in a wide 

variety of machinery such as automobiles, helicopters 

and aircraft engines .Their numerous advantages are 

high speed reductions in compact spaces, high 

torque/weight ratio , greater load sharing , diminished 

bearing loads and reduced noise and vibration. A 

typical simple planetary gear set consists of a sun 

gear, a ring gear and a number of identical planet 

gears (typically 3–6) meshing both with the sun and 

ring gears. They are well known for their 

symmetrical structure which allows an equal share of 

the total external torque applied between the 

planetary gears, the sun and the ring. However non 

stationary conditions of system such as overload 

conditions, torque fluctuation may affect the dynamic 

behavior of a planetary gear transmission. The 

inequality of the load distribution, however  arises on 

each planet gear because of random errors of 

manufacture , assembly and operating conditions. 

This results in noise and vibration which are key 

concerns in their applications and drop in efficiency 

of planetary gear system. In some helicopters 

planetary gear vibration is the primary source of 

cabin noise that can exceed 100dB.  

 Before 1990, the literature on analytical planetary 

gear dynamics is scarce. Cunliffe et al.[1]
 
 studied the 

eigenvalue problem for a thirteen degree of freedom 

system and identified the natural frequencies and 

vibration modes. Botman[2] investigated the 

vibration modes for a spur planetary gear with 

eighteen degrees of freedom. The effect of carrier 

rotation and variation of planet bearing stiffness on 

the natural frequencies are studied numerically. 

Frater et al.[3] extended Botman's natural frequency 

analysis by including unequal planet stiffness. 

Kahraman[4,5,6,7] presented a series of papers on 

planetary gear dynamics. He derived a nonlinear, 

time-varying planar dynamic model
9
 and 

subsequently extended it to three-dimensions and 

examined the influence of planet phasing on dynamic 

response[5]. Kahraman[7] reduced his model to a 

purely torsional one to predict natural frequencies 

and vibration modes. Parker[8] rigorously proved the 

effectiveness of using planet phasing schemes to 

suppress planetary gear vibration. Kahraman [6] 

showed the effects of mesh/support stiffnesses on the 

natural frequencies in his torsional model of 

planetary gears. Investigation of natural frequency 
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and vibration mode sensitivity to system parameters 

for tuned and mistuned planetary gears was done by 

J.Lin and R.G.Parker  [15].They also  investigated 

the natural frequency spectra and vibration modes of 

planetary gears to avoid power train resonances.[7 ] 

Analytical investigation of the sensitivities of natural 

frequencies and vibration modes to stiffness and 

inertia parameters of general compound planetary 

gears for both tuned and mistuned are studied in[12]. 

How the highly structured free-vibration properties of 

equally spaced planet systems change due to unequal 

planet spacing was studied in[5].Characterizing the 

effects of various errors on the dynamic properties of 

planetary gear system including tooth thickness 

,runout and load sharing as the most common gear 

system manufacturing was done by Parker,R.G. and 

G.J.Cheon.[13].The effects of some important 

parameters ,such as the variation of mesh stiffness 

and static transmission errors on the nonlinear 

dynamics of a planetary gear system with multiple 

clearances was studied in[14].The objective of this 

paper is to analytically investigate the natural 

frequency and vibration modes of general planetary 

gears in perturbed situation and comparing them with 

unperturbed situation .This allows one to find the 

dominant parameter effecting the perturbation of the 

system .Investigating the natural frequency spectra 

one can tune the system to avoid resonance . 

2  Modeling and equations 

The analysis deals with planar vibration of single 

stage planetary gears .A Lumped-parameter model 

used in this work for dynamic analysis is shown in 

Fig 1. All gears are considered as rigid bodies and 

component supports are modeled by springs. Each of 

sun, ring, carrier and Z planets are treated as rigid 

bodies. Each component has three degrees of 

freedom: two translational and one rotational. The 

model is similar to that used by Parker [12], the 

planet deflections are described by radial and 

tangential coordinates and more naturally describe 

the vibration modes. The coordinates illustrated in 

Fig.1 are used. The carrier, ring and sun 

translations 𝑎𝑔  , 𝑏𝑔 , where g=c,r,s and planet 

translations 𝛽𝐿 , 𝛾𝐿, L = 1,...Z are measured with 

respect to a rotating frame fixed to the carrier with 

origin O. The𝑎𝑔 ′𝑠 are directed towards the 

equilibrium position of planet 1, and 𝛽𝐿 , 𝛾𝐿  are the 

radial and tangential deflections of the z-th planet. 

The rotating frame rotates with the constant carrier 

angular speed Ωc. The rotational coordinates are𝐽𝑢 =
𝑟𝑢𝜃𝑢 ,u = c,r,s,1,... Z, where 𝜃𝑢  is the component 

rotation; 𝑟𝑢  is the base circle radius for the sun, ring 

and planet, and the radius of the circle passing 

through the planet centers for the carrier. 

Circumferential planet locations are specified by the 

fixed angles ∅𝑧 , where  ∅𝑧  is measured relative to the 

rotating basis vector i so that  ∅1 = 0. Fig.1 shows a 

sun planet mesh with masses ms , mp  and moment of 

inertia𝐼𝑠 , 𝐼𝑝 . ρs  is the pressure angle of sun/planet 

mesh and ∅𝑠𝑧 =  ∅𝑧 − ρs  . 

 

 

Figure 1. Lumped parameter model of planetary 

gears and system co-ordinates. (b) All translational 

co-ordinates ag  , bg  , g =c, r, s and 𝛽𝐿 , 𝛾𝐿, L = 1,...z 

are with respect to the frame {i, j, k} rotating at 

constant carrier speed Ωc . 

 

Free vibration ,time-invariant representation is 

considered and assumed identical. All planet bearing 

stiff nesses are equal kpn=kp, all sun-planet mesh 

stiffnesses are equal ksn= ksp and all ring planet mesh 

stiff nesses are equal krn=krp .The planets are equally 

spaced and cyclically symmetric structures, therefore 

can be divided into Z sector having a central 

angle∅ =
2π

Z
. Following the matrix derivation  of Fox 

method [16, 17], the general eigenvalue equation for 

perturbed free vibration is: [19] 

                                                                          

[M][X][𝜆] −  𝐾  𝑋 = 0                        (1)       

 

de = perturbation in design variable  ‘e’ 

[I] = identity matrix 

[K1] = unperturbed stiffness matrix  

[dKe ] = perturbation in [K1] due to change in  design 

variable ‘e’. 

[K] = perturbed stiffness matrix 
 λ1  = unperturbed eigenvalue matrix (diagonal) 

[dλe ] = perturbation in  λ1  due to change in design 

variable ‘e’ 

[M1] = unperturbed mass matrix 

[dMe] = perturbation in [M1] due to change in design 

variable ‘e’ 
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[M] = perturbed mass matrix 

[X1] =  Unperturbed eigenvector matrix (mode 

shape) 
  dXe  = perturbation in [X1] due to change in design 

variable ‘e’ 

[X] = perturbed eigenvector matrix 

 

M is the inertia matrix and Kb is the bearing stiffness 

matrix given in Appendix A.. To model the time-

varying stiffness associated with changing numbers 

of teeth in contact at each mesh, Km can be 

decomposed into mean and time-varying 

components. Tooth separation nonlinearity is 

implicitly included in Km(t).   Manipulating equation 

(1) we obtain the first order equation 

 𝑑𝜆𝑒  + [𝜌𝑒]  𝜆1 −  𝜆1  𝜌
𝑒 = [𝜉𝑒]                     (2) 

The diagonal   terms give the eigenvalue 

perturbations     

 𝑑𝜆𝑖
𝑒  = [𝜉𝑖𝑖

𝑒 ] 

Or the derivatives   

 

∂λi
e

∂e
=  

dλi
e

de
=

ξ
ii
e

de
 

Considering the case of equal alteration of all sun-

planet mesh stiffness i.e., ksz = ksp , the perturbed 

system remains tuned. Eigenvector derivative can be 

written as [18] 

 

dX = (In − X1ej
T).  λ1In − M1

−1 . (M1
−1 − 

                    
X1X1

T

X1
TM1X1

 )(dK − λ1 . dMe)X1  

Considering the case of equal alteration of all sun-

planet  mesh stiffness i.e., 𝑘𝑠𝑧 = 𝑘𝑠𝑝 ,the perturbed 

system remains tuned. The derivatives of the mass 

and stiffness matrices with respect to 𝑘𝑠𝑝  are:[5,12] 

 

All sub matrices of  
𝜕𝑲

𝜕𝑘𝑠𝑧
 are zero except the four that 

involve 𝑘𝑠𝑧  . For rotational mode ,the Eigen 

sensitivies are obtained as below 

𝜕𝜆𝑖

𝜕𝑘𝑠𝑝
=   (𝛿𝑠𝑧

𝑖 )2𝑧
1                                  (3) 

𝜕𝑋𝑖

𝜕𝑘𝑠𝑝

=    
𝛿𝑠𝑧

𝑖 𝛿𝑠𝑧
𝑘

𝜆𝑖 − 𝜆𝑘

𝑋𝑘

𝑍

𝑧=1

𝑁

𝑘=1,𝑘≠𝑖

 

Where 𝛿𝑠𝑧
𝑖  is the spring deformation of the sun-planet 

z mesh in mode 𝑋1 given by  

𝛿𝑠𝑧
𝑖 = 𝑦𝑠 cos  ∅𝑧 − ρs − 𝑥𝑠 sin  ∅𝑧 − ρs − 𝛾𝐿𝑐𝑜𝑠ρs

− 𝛽𝐿𝑠𝑖𝑛ρs + 𝐽𝑠 + 𝐽𝑛  

The rotational mode property implies that all sun-

planet mesh deformations are equal i.e. 𝛿𝑠𝑧
𝑗

= 𝛿𝑠𝑧
𝑖 ,  so 

equation (3) becomes 

𝜕𝜆𝑖

𝜕𝑘𝑠𝑝

=  (𝛿𝑠1
𝑖 )2

𝑧

1

 

The Eigen sensitivity to masses (ms , mr , mc , mp) and 

moment of inertia (Is , Ir , Ic , Ip)for sun ,ring ,carrier 

and planets for a tuned perturbed system are 

considered ,the eigenvalue derivatives for the three 

types of modes are 

  
𝜕𝜆𝑖

𝜕𝑚𝑔
=  −𝜆𝑖 𝑥𝑔

2 + 𝑦𝑔
2 = −

2

𝑚𝑔
 𝑇𝑔                        

𝜕𝜆𝑖

𝜕𝐼𝑔
=  −

𝜆𝑖

𝑟𝑔
2 𝑢𝑔

2 = −
2

𝐼𝑔
𝑇𝑔𝑗           g = r ,s ,c 

𝜕𝜆𝑖

𝜕𝑚𝑝

= −𝜆𝑖  (𝛽𝐿
2 + 𝛾𝐿

2)

Z

L=1

= −
2

𝑚𝑝

 𝑇𝐿 

Z

L=1

           

𝜕𝜆𝑖

𝜕𝐼𝑔
=

−𝜆𝑖

𝑟𝑝
2  𝑢𝐿

2

Z

L=1

 

𝑇𝑔  = modal translational kinetic energy of ring, sun 

and carrier 

𝑇𝑔𝑗   = modal rotational kinetic energy of ring, sun and 

carrier 

Planet Mode 

Characteristics of planet mode in perturbed situation 

are: 

- Carrier,ring and sun have zero translation 

and rotation i.e. 𝐹𝑔 = [0,0,0]𝑇  

- Natural frequencies has multiplicity Z =1 in 

perturbed situation. 

Therefore planet mode will get the form 

𝜁 =  0,0,0, 𝑓1, 𝑓1𝐹1 , 𝑓2𝐹1, …… …… … , 𝑓𝑧𝐹1 
𝑇  

𝑓𝑧  is a multiple of 𝑓1 = 1, then 

  Σ𝜔z sin∅z = 0 Σ𝜔z cos∅z = 0  Σ𝜔z =0       (4)                                        

In planet modes the sun ,carrier and ring have zero 

rotation and translation.The Eigen solution properties 

is illustrated using the nominal system  parameters 

are listed in table 1.  
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Table1- Nominal system parameters of the planetary 

gear 

 Sun Ring Carrier Planet 

Mass (kg) 0.4 2.35 5.43 0.66 

I/r2 (kg) 0.39 3.00 6.29 0.61 

Base diameter 

(mm) 

77.42 275.03 177.8 100.35 

Teeth number 27 99  35 

Mesh stiffness 

(N/m) 

ksp = krp = km = 5x108 

Bearing stiffness 

(N/m) 

kp = ks = kr =kc = 108 

Torsional stiffness 

(N/m) 

kru = 109    ksu = kcu = 0 

Pressure angle (°) ρs  = ρr  = ρ = 24.6 

The variation of eigenvalues in perturbed situation 

for two different conditions  are shown below: 

1- 𝑀 is assumed constant , K is assumed variable 

.(Figure- 2)  

 

Figure - 2 

2-  M  is assumed variable , K is assumed 

constant .(Figure – 3) 

 

Typical vibration modes for equally spaced planets 

are shown below. The movements of the ring and 

carrier are not shown in  figure 4 .Solid lines are 

perturbed situation and dotted lines are unperturbed 

situation. 
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Conclusion and future work 

The present study identifies the parameters affecting 

the natural frequencies of a general planetary gear 

system. The results can be applied to specific 

configurations (fixed sun, carrier or ring).For a tuned 

system a well-defined structure to the natural 

frequencies are obtained. The results are: 

Sensitivity to mass, moment of inertia and stiffness in 

perturbed situation is shown in Figure2,3. It is 

observed that fluctuation in all the natural frequencies 

presented in figure 2 are on higher side than those in 

figure 3.It is concluded that stiffness component 

dominates prominently than mass on the natural 

frequency From figures 2 and 3 it is observed that in 

perturbed tuned situation with degenerate natural 

frequency multiplicity m is 1.Figure 4 shows typical 

vibration modes for equally spaced planets. For 

planet modes ,motion of ring ,carrier and sun is zero. 

In gear systems satisfying relation (4),translation and 

rotation modes have structured properties. Planet 

motions are a multiple of the motion of first planet. 

For sun, carrier and ring the rotational modes have 

pure rotation. All planets move in identical form. 

Their translational modes have pure translation.For 

vibration modes reduced-order Eigen value problems 

are achieved. Sensitivity to mass, moment of inertia 

and stiffness are investigated for perturbed situation . 

   The scope for future work is to apply the method 

used in this paper for various mass components and 

stiffnesses using relevant materials for manufacturing 

gears and propose the one having  less influence on 

the vibration characteristic of the system. 
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APPENDIX – A 

 

M=diag(Mc,Mr,Ms,M1,...,MZ)    

   

 Mg = diag(mh,mh,Ih/rh
2
),                L=c,r,s,1,…,Z 

 

       Kb=diag(Kcb,Krb,Ksb,0,…,0)                                  

Kgb = diag(kgx,kgy,kgu)                        g=c,r,s 

Km =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
ΣKc1Z        0        0       Kc21      Kc22   … .  Kc2z  

  
          ΣKr1Z     0       Kr21      Kr22   … .  Kr2z  

                       ΣKs1Z    Ks21      Ks22   … .  Ks2z   

                                  Kpp1        0    … .     0

                                    … .      ⁞      
symmetric                                                

                                                                   Kppz

        
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Kpp

z = Kc3
z + Kr3

z + Ks3
z 

Kc1
z = kpz  

 
 
 
 
 
 

1           0      − sin ∅𝑧

             1          cos ∅𝑧  

    symm.                       1       
  

 
 
 
 
 

 

 

Kc2
z = kpz   

 
 
 
 
 

−cos ∅𝑧     sin ∅𝑧          0    

−sin ∅𝑧     − cos ∅𝑧          0    

0             − 1              0     
 
 
 
 

 

 

         Kc3
z
 = diag(kpz,kpz,0) 

  Kr1
z = krz    

 
 
 
 
 
sin2 ∅𝑟𝑧      − cos ∅𝑟𝑧 sin ∅𝑟𝑧       − sin ∅𝑟𝑧     

                           cos2 ∅𝑟𝑧               cos ∅𝑟𝑧

symmetric                                        1           
 
 
 
 

                       

     Kr2
z = krz 

 
 
 
 
 
−sin ∅𝑟𝑧 sinρs        sin ∅𝑟𝑧 cosρs       sin ∅𝑟𝑧     

cos ∅𝑟𝑧 sinρs      − cos ∅𝑟𝑧 cosρs     − cos ∅𝑟𝑧

sinρs               − cosρs                     − 1  
 
 
 
 

 

      Kr3
z = krz  

 
 
 
 
 
sin2ρr        − cosρrsinρr        − sinρr     

                          cos2ρr               cosρr

symmetric                                   1       
 
 
 
 

 

       Ks1
z = ksz  

 
 
 
 
 
sin2 ∅𝑠𝑧      − cos ∅𝑠𝑧sin ∅𝑠𝑧       − sin ∅𝑠𝑧

                         cos2 ∅𝑠𝑧                  cos ∅𝑠𝑧

symmetric                                             1     
 
 
 
 

 

       Ks2
z=ksz  

 
 
 
 
 
sin ∅𝑠𝑧sinρs      sin ∅𝑠𝑧cosρs       − sin ∅𝑠𝑧     

−cos ∅𝑠𝑧sinρs     − cos ∅𝑠𝑧cosρs     cos ∅𝑠𝑧

−sinρs                  − cosρs                      1      
 
 
 
 

     

         Ks3
z=ksz 

 
 
 
 
 
sin2ρs          cosρssinρs         − sinρs     

                   cos2ρs             − cosρs

symmetric                                   1       
 
 
 
 

    

                          ∅𝑟𝑧  =  ∅𝑧  – ρs           ∅𝑟𝑧  =  ∅𝑧  + ρs  
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