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Abstract— Vibration and acoustic emission (AE) signal 

monitoring are popular techniques for detecting bearing fault, 

the main cause in induction motor failure which can lead to 

catastrophic damage. This paper presents comparison between 

vibration and AE signal monitoring as a tool for induction 

motor bearing fault detection. The effectiveness of time-domain 

analysis is compared with frequency-domain. Statistical 

parameters used in time-domain include RMS, crest factor, and 

kurtosis whereas for frequency-domain, normal spectrum and 

envelope spectrum using Hilbert transform are applied. The 

results reveal that vibration and AE signals are effective 

measurement to detect bearing fault in both time- and 

frequency-domain. 

Keywords— Induction motor bearing; fault detection; 

condition monitoring.  

I.  INTRODUCTION 

Induction motor is a prominent rotating machine widely used 
in many industrial, commercial and domestic applications due 
to its efficiency, reliability, robustness, and economical. It is 
reported that this type of motor dominate about 96% of 
energy consumption for all electric motors, which consume 
about 40% of total electrical energy usage [1]. Although 
induction motor is reliable and robust, it still expose to 
catastrophic failure especially when running under heavy 
loads and long period of time. Generally, induction motor 
breakdown can be caused by bearing fault, shaft or coupling 
fault, rotor fault and stator fault [2]. Surveys revealed that 
bearing fault is the most typical failure in induction motor 
components [3], [4]. 

Bearing defects can be grouped as „distributed‟ or 
„localized‟ [5]–[7]. Distributed defects normally caused by 
manufacturing error, improper installation or abrasive wear. 
This group of defect include surface roughness, waviness, 
misaligned races, and off size ball. Whereas, localized defects 
are include cracks, pits, and spalls on the rolling surfaces 
which might be caused by fatigue failure due to overloading 
or shock loading of the bearings during operation and 
installation. 

 

Condition monitoring is one of popular methods in 
determining bearing faults. Measurements such as vibration, 
temperature, acoustic, motor current, and wear debris are often 
used in bearing fault detection [8]. Among these, vibration 
signal is the most preferred tool in bearing fault monitoring. 
Fig. 1 shown typical signal condition monitoring procedure 
[2], [9]–[11]. 

 

Fig. 1. Typical process for condition monitoring. 

A. Time-domain Approach 

Visual inspection of vibration and AE signal in time 
waveform is a fast method for identifying bearing damage 
especially for inner-race and outer-race fault. However, this 
method is not reliable because of noise interruption and 
difficulties when dealing with low amplitude signals. 
Statistical analysis is other basic procedure in bearing fault 
detection, used in past literatures considering parameters such 
as root mean square (RMS), crest factor, and kurtosis [12], 
[13]. 

RMS explains the effective value (magnitude) of the 
signal, useful to calculate the average value for variation of 
positive and negative values in sinusoidal signal. For N 
numbers of data set (y1,y2,…yn), RMS is defined as the square 
root of the arithmetic mean of the squares of original values 
(y1

2
,y2

2
,…yn

2
) as in (1). 
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The crest factor can be defined as the ratio of the peak 
value to the RMS value, it yields the information about the 
spikiness of the measured signal. It is a pure number without 
any dimensions. Crest factor formula is calculated as: 


RMS

y
cr

n )max(
  

Kurtosis is the standardized 4th statistical moment of data 
which indicates the property of signal, whether the signal is 
peaked or flat relative to a Gaussian distribution. Kurtosis 
value is given by (3). 
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and  is signal standard deviation: 
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B. Bearing Characteristic Frequencies 

There are five characteristic frequencies exist in rotating 
bearing as shown in Fig. 2: (1) Shaft frequency, fs, (2) Cage 
frequency, fc, (3) Ball spin frequency, fb, (4) Inner race 
frequency, fIR, and (5) Outer race frequency, fOR [14]–[16].  

 

Fig. 2. Bearing dimension and characteristic frequencies. 

Shaft frequency is relative speed difference between inner 
and outer race which can be obtained from motor rotation 
speed (RPM).  

Cage frequency or fundamental train frequency (FTF), fC 
is the rotating speed of the ball cage assembly that can be 
calculated as: 










 cos-1

2 D

df
f S

C

 

Ball spin frequency (BSF), fB is circular frequency of each 
ball as it spin which is two times the cage frequency: 










 2

2

2

cos-1
D

d
f

d

D
f SB

 

 Ball pass frequency of inner race (BPFI), fIR is the 
frequency appeared when the ball spin across the defect in the 
inner race which is depend on number of balls: 
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Ball pass frequency of outer race (BPFO), fOR is the frequency 
for outer race defect: 
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In these equations, Nb is the number of balls, d is the 
roller diameter, D is the pitch diameter of the bearing, and α 
is a contact angle.  

In frequency-domain analysis, Fast-Fourier Transform 
(FFT) is an established algorithm to convert data from the 
time-domain. It is difficult to detect bearing fault frequencies 
in FFT spectrum of vibration signal [17]. However, some 
researchers have applied successfully [18], [19]. Furthermore, 
envelope spectrum using Hilbert transform can provide better 
result to locate fault frequencies and its resonances. 

II. EXPERIMENTAL SETUP 

The experimental tests were performed on test rig with a 
two-speed pole-changing induction motor (See Table 1). The 
motor is supplied by the 3 phase variable voltage transformer 
pre-set at 380V. Tacho generator was connected to the drive-
end of motor to measure rotation speed of induction motor 
(Fig. 3). 
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Fig. 3. Test-rig setup: (1) Computer, (2) Oscilloscope, (3) Control unit, (4) 3 Phase variable voltage supply, (5) Motor protection switch, (6) Squirrel cage 

induction motor, (7) Tacho generator, and (8) Magnetic powder brake. 

TABLE 1.  INDUCTION MOTOR SPECIFICATION 

Description Value 

Make Leybold Didactic GmbH 

Model Number 732 94 

Rated Power  0.7/0.95 kW 

Rated Speed 1405/2825 min-1 

Voltage 3 Phase 380V 

Frequency 50 Hz 

Rated Current 2.0/2.75 A 

Three bearing condition have been tested, i.e. normal 
bearing, bearing with inner race fault, and outer-race fault. All 
faulty bearings have been artificially damaged by axial drilled 

of 1mm hole through the raceways (see Fig. 4). 

 

Fig. 4. Bearing with localized defect of (a) inner race and (b) outer race. 

Tested bearing was placed on the drive-end of the motor. 
The motor then have been tested at 1450 rpm and 2900 rpm 
for each bearing conditions. Vibration signal is measured 
using SKF CMSS 9952 piezoelectric accelerometer with 
sensitivity of 10mV/g and the DeCI SE1000H acoustic 
emission transducer used to collect AE signal (Fig. 5). Data 
are sampled at 12 kHz using Picoscope 7000 oscilloscope. 

 
Fig. 5. Piezoelectric accelerometer, (a) and acoustic emission transducer, 

(b) axially mounted on the motor casing. 

Characteristic frequencies; fC, fB, fIR, and fOR for the tested 

bearing are shown in Table 2, calculated based on (6), (7), (8) 

and (9) respectively.  

TABLE 2.  TESTED BEARING CHARACTERISTIC FREQUENCIES IN HERTZ 

Frequency Name 1450 rpm 2900 rpm 

Shaft frequency, fS 24.17 48.33 

Fundamental train frequency (FTF), fC 9.21 18.42 

Ball spin frequency (BSF) , fB 96.26 192.51 

Ball pass frequency of inner race (BPFI), fIR 119.55 239.11 

Ball pass frequency of outer race (BPFO), fOR 73.76 147.51 

III. RESULTS AND DISCUSSION 

Vibration and AE signal from induction motor running 

without load at rotational speed of 1450 rpm and 2900 rpm 

have been analyzed with three methods: (1) visual inspection 

of time waveform, (2) statistical analysis in time-domain and 

(3) checking for the existence of bearing fault frequencies in 

normal spectrum and envelope spectrum.  
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A. Time-domain Waveform Comparison 

In general, for motor rotational speed of 1450 rpm, AE 

signal from healthy bearing contained more values compared 

to acceleration signal [See Fig. 6(a)]. However, waveform for 

both acceleration and AE signal in 2900 rpm speed displayed 

in similar pattern [Refer Fig. 6(b)]. Both signals did not 

showed any repetitive pattern along the timeframe.  

(a) 

 
(b) 

 

Fig. 6. Healthy bearing time waveform at (a) 1450 and (b) 2900 rpm. 

Waveform of inner-race faulty bearing for 1450 rpm and 

2900 rpm are presented in Fig. 7. Consistent repeating 

impulse is observed in vibration and AE signals for 1450 

rpm, repeated at same slots. Similar pattern also observed in 

2900 rpm. Although maximum peak value in vibration 

waveform is higher than AE signal, the quality of AE signal 

is better. 

(a) 

 

(b) 

 

Fig. 7. Inner-race faulty bearing waveform at (a) 1450 and (b) 2900 rpm. 

Fig. 8(a) and Fig. 8(b) show comparison between 
vibration and AE signal waveform for outer-race defected 
bearing in 1450 and 2900 rpm respectively. Overall shape for 
vibration and AE signals are about the same for both rotating 
speed. Repetitive peak impulse are clearly exists in small 
period of time compared to inner-race defected bearing. 

 

(a) 

 
(b) 

 

Fig. 8. Outer-race faulty bearing waveform at  (a) 1450 and (b) 2900 rpm. 

B. Statistical Analysis 

Statistical values for vibration and AE signal waveform 

are calculated using MATLAB 8.3 for time period of 0 to 0.5 

seconds, same as in time waveform analysis. Table 3 shows 

RMS values comparison between healthy and faulty bearing 

for vibration and AE signals in 1450 and 2900 rpm. RMS 

values for vibration signal indicate small difference between 

healthy and defected bearing whereas RMS values for AE 

signals are close to 0 in all bearing conditions. The highest 

RMS value is spotted in the outer-race defected bearing 

running at 2900 rpm.  

TABLE 3.  RMS VALUES COMPARISON 

Bearing 

Condition 

Vibration AE 

1450 rpm 2950 rpm 1450 rpm 2950 rpm 

Healthy 0.035 0.051 0.003 0.017 

Inner-race defect 0.074 0.112 0.015 0.030 

Outer-race defect 0.119 0.404 0.005 0.031 

 

Crest factor values for this experimentation data are 

tabulated in Table 4. There are quite large difference between 

crest factor values for healthy and faulty bearing for both 

vibration and AE signal data where the crest factor for normal 

bearing condition is smaller than inner-race and outer-race 

faulty bearing in both rotating speed.  

 

TABLE 4.  CREST FACTOR VALUE COMPARISON 

Bearing 

Condition 

Vibration AE 

1450 rpm 2950 rpm 1450 rpm 2950 rpm 

Healthy 4.461 6.189 4.906 4.337 

Inner-race defect 8.521 14.830 10.472 12.140 

Outer-race defect 10.571 9.345 14.708 7.836 
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The kurtosis values for healthy and defected bearings are 

presented in Table 5. Generally, kurtosis value for both signal 

of healthy bearing is smaller than defected bearing which is 

close to 3, a known value for a normal distribution. The 

vibration signal provided higher difference between healthy 

and defected bearings compared to AE signal. 

TABLE 5.  KURTOSIS VALUES COMPARISON 

Bearing 

Condition 

Vibration AE 

1450 rpm 2950 rpm 1450 rpm 2950 rpm 

Healthy 5.971 4.060 3.088 4.229 

Inner-race defect 70.042 48.413 19.295 16.994 

Outer-race defect 48.695 21.370 30.750 13.350 

 

C. Envelope Spectrum Analysis 

Normal spectrum and envelope spectrum analysis have 

been performed using normal FFT and combination of 

Hilbert transform with FFT respectively. Fig. 9 to Fig. 11 

displayed normal spectrum whereas Fig. 12 to Fig. 14 shown 

envelope spectrum. 

 

In normal FFT plot, AE spectrum is more stable than 

vibration spectrum. The shaft frequency, fS is appeared only 

in AE spectrums at rotational speed of 2900 rpm [Refer Fig. 

9(b), Fig. 10(b), and Fig. 11(b)]. Furthermore, only fault 

frequency of inner-race, fIR is detected (Fig. 10). 

After applying Hilbert transform to vibration and AE 

signals, the presented envelope spectrum shown more 

promising results. All fault frequencies appeared in both 

vibration and AE spectrums (Fig. 13 and Fig. 14) with clearer 

notification of outer-race fault frequency compared to inner-

race. 

Based on time-domain and frequency-domain analysis, 

the results reveal that vibration and AE signal monitoring are 

suitable procedures for detecting inner-race and outer-race 

bearing fault. In time waveform visual inspection, AE signal 

provide better information of fault occurrence. However, 

vibration signal provide clearer statistical parameters of 

RMS, crest factor, and kurtosis value to differentiate between 

healthy and faulty bearing. In overall comparison, RMS is the 

worst feature in detecting bearing fault compared to crest 

factor and kurtosis. 

For frequency-domain analysis, normal spectrum could 

not locate fault frequencies except for inner-race defect. The 

envelope spectrum analysis using Hilbert transform is the 

best method suitable for detection of bearing fault frequencies 

in both vibration and AE envelope spectrum. 

 
(a) 

 
(b) 

 

Fig. 9. Healthy bearing normal spectrum at  (a) 1450 and (b) 2900 rpm. 

(a) 

 
(b) 

 

Fig. 10. Inner-race faulty bearing normal spectrum at  (a) 1450 rpm and (b) 
2900 rpm. 

(a) 

 
(b) 

 

Fig. 11. Outer-race faulty bearing normal spectrum at  (a) 1450 rpm and (b) 
2900 rpm 
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(a) 

  
(b) 

 

Fig. 12. Healthy bearing envelope spectrum at  (a) 1450 and (b) 2900 rpm. 

(a) 

 
(b) 

 

Fig. 13. Inner-race faulty bearing envelope spectrum at  (a) 1450 and (b) 
2900 rpm. 

(a) 

 
(b) 

 

Fig. 14. Outer-race faulty bearing envelope spectrum at  (a) 1450 and (b) 
2900 rpm. 

 

IV. CONCLUSION 

Visual inspection of acceleration and AE signal waveform, 

statistical analysis and envelope spectrum monitoring are 

acceptable methods in detecting bearing fault. However, this 

procedures are time consuming and need relevant knowledge 

to analyze the results. Therefore, an automatic diagnosis 

system is essential and will be considered for future research. 
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