
Video input Through Test Pattern Generator
IP Core on Zybo Board (Zynq 7000)

Karthik Poduval

Abstract—This paper demonstrates an example video input device
using TPG IP on a Xilinx ZYNQ7000 series SoC/

Index Terms—FPGA, Video Capture

I. INTRODUCTION

The goal of this project is to build and SoC using the Zynq 7000

series processor using the programmable logic block to

implement a video Test Pattern Generator and other necessary

blocks to generate video and transmit into the ZYNQ. Before

describing the hardware and software architecture for this

project, it makes sense to first describe the zynq architecture

first in the next few sections covering the aspects that matter

the most to this project.

II. ZYNQ ARCHITECTURE

The Zynq chip used in this project is the Zynq 7000 series SoC.

All the Zynq variants under this family share the same

architecture with the exceptions that variants may have

different amounts of programmable logic. Figure 1 depicts a

typical Zynq architecture. The Processing System (PS) consists

of a dual ARM Cortex A9 processors with dedicated L1 caches

and a shared L2 cache. The two L1 cache units are coherent

through a snoop control unit. Access to the snoop control unit

(SCU) is also made available to external hardware through the

ACP such that AXI masters on the PL1 can implement cache

coherent access to memory blocks.

A. Programmable Logic

On the PL side of things, we have general purpose configurable

logic blocks completely managed by the Vivado software

package which translate from IP RTL to implementation on the

PL system. The IOB (Input Output Blocks) allow for external

word interfacing though pins present on the pin package. The

PL also contains DSP blocks and block RAM for specialized

implementations that can make use of such accelerators.

B. PS PL Interconnect

To connect the PL and PS together, the ZYNQ uses the AXI

interface/ interconnect as shown in Figure 3. In addition, there

are 9 AXI interfaces to and from the PL system. These AXI

interfaces fall under the following categories.

• General Purpose (GP) AXI Interface: These are general

purpose as the name suggests and allows for general

communication between the PS and PL. We have Master

interfaces where PS is master and PL is slave and Slave

interfaces where PL is master and PS is slave. The GP

interfaces have no buffering and are suitable for low speed

data transfers and memory mapped IO operations.

• Accelerator Coherency Port: The ACP interface is a 64 bit

AXI interface which allows for a master on PL to make

transfers to PS memory elements that are cache coherent.

• High Performance (HP) AXI Interface: These interfaces

are buffered (with FIFOs) and suited for bursts transfers

between master and slave. All the HP interfaces are slave

interfaces w.r.t PS (PL is the master). VDMA (video DMA,

which we will cover in a later section, gains access to the

memory controller on PS through this interface).

Zybo [1] is a development/prototyping board designed and

manufactured by Diligent Inc. Zybo contains the Z-7010

variant of the Zynq 700 series family. Following are the key

features of the Zybo board.

C. Zybo Architecture

Zybo is a development/prototyping board designed and

manufactured by Diligent Inc. Zybo contains the Z-7010

variant of the Zynq 700 series family. Following are the key

features of the Zybo board.

Fig. 1. ZYNQ7000 Architecture

Fig. 2. The programmable logic fabric

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS070072
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 07, July-2024

www.ijert.org
www.ijert.org

• Xilinx Zynq-7000 XZ7Z010-1CLG400C

• 28000 logic cells

• 240 KB Block RAM

• 80 DSP slices

• On-chip dual channel, 12-bit, 1 MSPS analog-to-digital

converter XADC)

• 650 MHz dual-core Cortex™-A9 processor

• On-board JTAG programming and UART to USB

converter

• DDR3 memory controller with 8 DMA channels

• 512 MB x32 DDR3 w/ 1050Mbps bandwidth

• 128 Mb Serial Flash w/ QSPI interface

• microSD slot (supports Linux file system)

• High-bandwith peripheral controllers: 1G Ethernet, USB

2.0, SDIO

• Low-bandwidth peripheral controller: SPI, UART, I2C

• Dual-role (Source/Sink) HDMI port

• 16-bits per pixel VGA output port

• Trimode (1Gbit/100Mbit/10Mbit) Ethernet PHY

• OTG USB 2.0 PHY (supports host and device)

• External EEPROM (programmed with 48-bit globally

unique EUI-48/64™ compatible identifier)

• Audio codec with headphone out, microphone and line in

jacks

• GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs

• Six Pmod ports (1 processor-dedicated, 1 dual

analog/digital)

Fig. 4. ZYBO Board

Fig. 5. ZYBO Pins (Highliged ones used in this project)

III. SYSTEM ARCHITECTURE

Now that all the key elements of the Zynq and the Zybo board

have been introduced, it’s now time to describe the project

architecture.

A. Top Level Setup

At a very high level we have a PC which is used to program the

Zybo via JTAG and also communicate with the test software

via UART. An HDMI display is connected to the Zybo for

display.

Fig. 6. Top Level Setup

The Zybo based system is used as starting point which displays

a software generated test pattern on to the HDMI interface.

Then I add a Test Pattern Generator(TPG) on top of the Zybo

base system design. The test pattern IP core transmits the

generated video data to the DDR memory though a VDMA

(Video DMA) IP block. Once this happens the software

generated test pattern is overwritten by the video data DMA’d

by the TPG core.

Fig. 3. PS PL Interface/Interconnect

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS070072
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 07, July-2024

www.ijert.org
www.ijert.org

B. Detailed Design Architecture

Fig. 7. Detailed Design

In this section lets describe the detailed design. Figure 6

outlines the detailed design architecture. The Zynq processing

system is added along with one AXI GP0 master interface and

a AXI HP0 slave interface. The AXI GP0 master interface is

connected to an AXI Peripheral Interconnect. It uses the AXI

Lite protocol to talk to all the different IP blocks in the design

(display controller, TPG, display VDMA, TPG VDMA). AXI

Lite is an AXI4 protocol used primarily for programming the

different IP blocks through memory mapped IO interface. The

Zynq is also a slave to the AXI HP0 interface. On the other end

of the AXI HP0 interface is an AXI Memory interconnect. The

Display VDMA and the TPG VDMA’s are masters as the have

direct access to the DDR memory though the HP0 interfaces.

The AXI TPG core interfaces to the AXI VDMA through the

AXI Stream protocol which is high speed and allows for burst

transfers. The AXI VDMA is a write master and the Display

VDMA is a read master w.r.t DDR memory. Once the DMA’s

have been initialized and provided with memory addresses,

they start moving data between hardware IP (TPG, Display

Controller) and memory. The DMA’s can be configured to

generate interrupt on completion as well as indicating errors,

however this design doesn’t include the GIC (Generic Interrupt

Controller) so we do not have this functionality.

IV. SOFTWARE ARCHITECTURE

The software for this project starts with the Zybo base system

software and adds the software to control the TPG and TPG

VDMA on top of it. The software flow is shown in Figure 8 and

desing files can be found in [2].

Fig. 8. Software Flow

REFERENCES

[1] “Zybo.” [Online]. Available: https://tinyurl.com/zjr9uht

[2] “Designfiles.” [Online]. Available:
https://github.com/karthikpoduval/ ZYBO-TPG

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS070072
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 07, July-2024

www.ijert.org
www.ijert.org

