

VLSI Implementation of Turbo Decoder

Architecture for WSN

Sohail Siraj. S

PG Scholar, Dept of ECE

SMVEC, Puducherry, India

Senthil. P
Assistant Professor, Dept of ECE

SMVEC, Puducherry, India

Abstract— This Turbo codes have recently been considered for

energy-efficient wireless sensor networks, since they facilitate low

transmission energy consumption. To reduce the overall energy

consumption of wireless sensor networks Look-Up-Table-

Logarithmic-BCJR (LUT-Log-BCJR) architectures having low

processing energy consumption are required. This work,

decomposes the LUT-Log-BCJR architecture into its most

fundamental Add Compare Select (ACS) operations and

performed using a novel low-complexity ACS unit. The proposed

architecture employs an order of magnitude fewer gates than the

most recent LUT-Log-BCJR architectures, providing a good

result in energy consumption reduction, lower chip area and

lower delay in processing All the experiments are performed and

simulated in XILINX ISE 13.2 environment using VHDL(Very

high speed integrated circuit hardware description language).

Keywords – LOG-LUT BCJR, Turbo codes, ACS(Add compare

select), WSN.

I. NTRODUCTION

Turbo codes are a class of high-performance forward error

correction (FEC) codes developed in 1993, which were the

first practical codes to closely approach the channel capacity,

a theoretical maximum for the code rate at which reliable

communication is still possible given a specific noise level[1].

Turbo codes have been used also for its high coding gain.

Wireless sensor networks are considered to be energy efficient

because they rely on batteries that are light and inexpensive

and can operate on extended periods of time. The WSN’s

energy consumption is mainly dominated by the transmission

energy [2],[3].Turbo codes have recently found application in

these scenarios [3], [4], since their high coding gain facilitates

reliable communication when using a reduced transmission

energy. However the reduced transmission energy is

counteracted by the turbo decoder’s energy

consumption[4].For this reason Turbo codes designed for

energy efficient WSNs must reduce the overall energy

consumption i.e Sensor’s transmission energy and Turbo

decoder’s energy consumption.

The BCJR algorithm is an algorithm for maximum a

posterior decoding of error correcting codes defined on

trellises (principally convolutional codes). The algorithm is

named after its inventors: Bahl, Cocke, Jelinek and Raviv.

This algorithm is critical to modern iteratively-decoded error-

correcting codes including turbo codes and low-density parity-

check codes. The BCJR algorithm contains multiplications

and divisions in computation which is complex and due to this

reason it was not used for almost 30 years. Since the invention

of turbo codes BCJR algorithm have been started to be used.

Now many variants have been evolved from BCJR algorithm.

They are

 MAX-LOG BCJR ALGORITHM

 LOG-LUT BCJR ALGORITHM

All the computations when being transferred into the

logarithmic domain becomes additions and subtractions which

reduce the complexity. The Max-Log-BCJR algorithm appears

to lend itself to both high-throughput scenarios, as well as to

the above mentioned energy-constrained scenarios. This is

because low turbo decoder energy consumption is implied by

Max-Log-BCJR algorithm’s low complexity. However, this is

achieved at the cost of degrading the coding gain by 0.5 dB

compared to the optimal Log-BCJR algorithm.

This motivates the employment of the Look-Up-Table-Log-

BCJR (LUT-Log-BCJR) algorithm [5] in energy-constrained

scenarios, since it approximates the optimal Log-BCJR more

closely than the Max-Log-BCJR and therefore does not suffer

from the associated coding gain degradation.However,to the

best of our knowledge, no LUT-LOG-BCJR ASICS have been

specifically designed for energy-constrained scenarios.

Previous LUT-Log-BCJR turbo decoder designs [6]–[9] were

developed as a part of the on-going drive for higher and higher

processing throughputs, although their throughputs have since

been eclipsed by the Max-Log-BCJR architectures. This opens

the door for a new generation of LUT-Log-BCJR ASICs that

exchange processing throughput for energy efficiency.

II. TURBO ENCODER AND DECODER SCHEMATIC

As shown in figure Turbo Encoder is a parallel

concatenation of two recursive convolutional encoders

separated by an interleaver. The Turbo Encoder [10] produces

three outputs (one systematic output bit and two parity bits)

for every input bit.

Fig 1.Turbo Encoder

The Turbo decoder [10] is shown as in Figure 2 .The
decoder of Figure 2 operates iteratively, and in the first

1935

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21067

iteration the first component decoder takes channel output
values only, and produces a soft output as its estimate of the
data bits. The soft output from the first encoder is then used as
additional information for the second decoder, which uses this
information along with the channel outputs to calculate its
estimate of the data bits. Now the second iteration can begin,
and the first decoder decodes the channel outputs again, but
now with additional information about the value of the input
bits provided by the output of the second decoder in the first
iteration. This additional information allows the first decoder
to obtain a more accurate set of soft outputs, which are then
used by the second decoder as a-priori information. This cycle
is repeated, and with every iteration the Bit Error Rate (BER)
of the decoded bits tends to fall. However the improvement in
performance obtained with increasing numbers of iterations
decreases as the number of iterations increases. Hence, for
complexity reasons, usually only about 8 iterations are used.

Due to the interleaving used at the encoder, care must be
taken to properly interleave and de-interleave the LLRs which
are used to represent the soft values of the bits, as seen in
Figure 4.3. Furthermore, because of the iterative nature of the
decoding, care must be taken not to re-use the same
information more than once at each decoding step.

Fig 2.Turbo Decoder

III. FORWARD AND BACKWARD RECURSIONS

Log-BCJR algorithm [11] is composed of the following
four parts.

The values of γ depend on the inputs of the convolutional
decoder. There are two inputs, the encoded LLRs input and
the uncoded LLRs input. As shown in Figure 2, the encoded
LLRs input is the LLRs of the encoded sequence received

from the channel 𝑐𝑛
𝑐 . The uncoded LLRs input is 𝑦𝑎 . For a

transition T, the 𝛾𝑦 and 𝛾𝑐 can be calculated as

𝛾𝑦 𝑇 = 1 − 𝑦 𝑇 𝑦𝑎
𝑛(𝑇)

 (1)

 𝛾𝑐 𝑇 = 1 − 𝑐 𝑇 𝑐𝑐 𝑛(𝑇) . (2)

The values of 𝛼 depend on the 𝛾 values and 𝛼 values from

the previous step in the trellis. Hence, it requires a forward

recursion in the trellis to obtain all the 𝛼 values. For a state S,

in step n, the function to calculate 𝛼 is:

𝛼 𝑆 = max∗

𝑇𝜖𝑡𝑜 (𝑆)
 𝛾𝑦 𝑇 + 𝛾𝐶 𝑇 + 𝛼 𝑓𝑟(𝑇) . (3)

Where 𝛼 𝑆1 = 0.

The values of 𝛽 depend on the 𝛾 values and 𝛽 values from

the next step in the trellis. Hence, it requires a backward

recursion in the trellis to obtain all the 𝛽 values. For a state S,

in step n, the function to calculate 𝛽 is:

𝛽 𝑆 = max∗

𝑇𝜖𝑓𝑟 (𝑆)
 𝛾𝑦 𝑇 + 𝛾𝐶 𝑇 + 𝛽 𝑡𝑜(𝑇) . (4)

Where 𝛽 𝑆𝑛−1 = 0

4. 𝛿𝑦 calculation: The values of 𝛿𝑦 can be calculated

according to

 𝛿𝑦 𝑇 = 𝛾𝐶 𝑇 + 𝛼 𝑓𝑟𝑜𝑚 𝑇 + 𝛽(𝑡𝑜 𝑇) (5)

5. Finally, the extrinsic information can be calculated based on

𝛿 values. The extrinsic LLRs of the uncoded bits 𝑦𝑒 are:

 𝑦𝑛
𝑒 = max∗

𝑇 𝑦 𝑇 =0
 (𝛿𝑦(𝑇)) − max∗

𝑇 𝑦 𝑇 =1
(𝛿𝑦(𝑇)). (6)

IV. PROPOSED WORK

The proposed energy-efficient LUT-Log-BCJR

architecture[12] is shown in Figure 3. Unlike conventional

architectures, it does not use separate dedicated hardware for

the three recursions shown in Section 3. Instead, our

architecture implements the entire algorithm using 2𝑚 ACS

units in parallel, each of which performs one ACS operation

per clock cycle.

The Main Memory consists of all the processed a priori

and uncoded LLRS required for the processing of the entire

LOG LUT BCJR ALGORITHM. The Main memory is

designed as a fixed point data (5-bit integer part and 2-bit

fractional part) RAM. The LLRS are being fed into the main

memory using “mem in” operation and the LLRS are read out

using the “mem out” operation. Now the LLRS to be

processed are read out from the main memory are fed into the

ACS units which are arranged in a parallel manner.2𝑚 ACS

units are used in our architecture,in our work we use memory

elements ,m=2,so 4 ACS units are used.

Figure 3. Proposed Architecture

The ACS units performs addition and subtraction in one

clock cycle and 𝑚𝑎𝑥∗ operation in four clock cycles. So all

1936

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21067

the 𝑚𝑎𝑥∗ operations for all the 4 states

𝑆𝑇𝐴𝑇𝐸0, 𝑆𝑇𝐴𝑇𝐸1 , 𝑆𝑇𝐴𝑇𝐸3 , 𝑆𝑇𝐴𝑇𝐸4 are implemented in a

total of 4 clock cycles whereas in the conventional architecture

it takes 16 clock cycles for a particular window.

The lut constants described in the equation are stored in the

Register bank. The Register bank is read out and written in

using the “reg in” and “reg out” operation as shown in the

figure. So during the 𝑚𝑎𝑥∗ operation for utilising the lut

constants, register bank is used. The intermediate results used

in the 𝑚𝑎𝑥∗ operaion are also stored in the register bank, so

whenever needed it is read out from the register bank and

processed using the ACS units. Since the proposed

architecture supports a fully parallel arrangement of an

arbitrary number of ACS units of Figure, it may be readily

applied to any LUT-Log-BCJR decoder, regardless of the

specific convolutional encoder parameters employed.

The Proposed architecture can be readily applied to any

type of decoding algorithm such as viterbi, max-log-map

algorithm, since the ACS units are low complexity functional

units which operate based on the operation signals represented

by O. Now Let us now discuss the Operations of the ACS unit.

V. DECOMPOSITION OF LOG-LUT BCJR ALGORITHM

Equations (1), (2), (3), (4), (5), (6) of the LUT-Log-BCJR

algorithm comprise only additions, subtractions and the max*

calculation of (12,Equation-2). While each addition and

subtraction constitutes a single ACS operation, each max*

calculation can be considered equivalent to four ACS

operations. Now the max* operation is implemented in four

steps.The MAX-LOG-BCJR algorithm does not use the

approximation it simply finds out the maximum of two

LLRS,so it only uses one ACS operation after the calculation

of alpha or beta state metric Similarly, fewer ACS operations

are required, when employing the Constant- Log-BCJR [13]

algorithm. These alternative algorithms reduce the hardware

complexity and increase the throughput, therefore reducing the

decoder’s energy consumption. However, this is achieved at

the cost of requiring higher transmission energy to achieve the

same BER performance as the LOG LUT BCJR algorithm.

TABLE 1. DECOMPOSITION OF MAX *

OP 1 Simultaneously calculate max(𝑝, 𝑞) and 𝑝 − 𝑞

OP 2 Determine if 𝑝 − 𝑞 > 0.75

OP 3
Determine if 𝑝 − 𝑞 > 0 or 𝑝 − 𝑞 > 2

depending on outcome of operation 2

OP 4
Add max(𝑝, 𝑞) to the value selected from set

{0.75,0.5,0.25,0}

VI. ACS UNITS

These are low complexity functional units which are

collectively capable of performing the entire LOG-LUT BCJR

algorithm. ACS units[13] form the core unit in viterbi decoder,

the architecture might vary for both the algorithms, but these

are low complexity units which occupy less chip area and

perform with less delay.

The proposed work employs ACS units in parallel, the

critical path delay is re Further wastage is avoided, since the

critical paths of our functional units are naturally short- and

equally-lengthed, eliminating the requirement for additional

hardware to manage them. In this section we propose the

novel low-gate-count ACS unit of Figure 4, which performs

one ACS operation per clock cycle.

Figure 4. ACS Unit

All the ACS operations are performed in 2’s complement

fixed point representation. As shown in the above figure

inputs and outputs are represented in 7-bit fixed point

representation.

A. Operations of ACS Unit

The control signals of the ACS unit are provided by the

operation code O={𝑂0,𝑂1 ,𝑂2 ,𝑂3 ,𝑂4,𝑂5} which can be used to

perform the functions listed in Table The addition and

subtraction operations for the equations can be simply

performed by the operation code O= “000000” and

O=“100000” respectively. The max* operation which requires

four steps as exemplified in the table are implemented in four

ACS operations as listed below.

 Operation 1(O=”101100”):

In this clock cycle the max* calculation is activated by

using the operation code O = “101100”, now the operands for

max* operation p and q are read out from the main memory

and fed into the respective ACS units, then the result r is fed

into the register bank. The result r is then stored in register

bank, which is the approximated as 𝑝 − 𝑞 . The result C0

determines max (p,q).

1937

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21067

 Operation 2(O=”110010”):

The LUT comparison performed during the second ACS

operation is activated by the operation code O = “110010” of

Table. Operand 𝑝 uses the constant decimal value 0.75 which

is provided by the register bank in the architecture and 𝑞 takes

the maximum of 𝑝 and 𝑞 which was computed in the previous

clock cycle. The value for 𝑞 is read out from the register bank.

In this clock cycle, the result 𝑟 is not stored, while the result

stored in 𝐶1 provides the outcome of the test 𝑝 − 𝑞 > 0.75,

as required by the second ACS operation described in Table 2

.

 Operation 3(O=”110001”):

Similarly to the previous clock cycle, the result of the test

 𝑝 − 𝑞 > 0 or of the test 𝑝 − 𝑞 > 2 is determined

depending on whether it was previously decided that 𝑝 − 𝑞
> 0.75, now we employ the operation code O = 110001 of

Table 2,for 𝑞 again use the maximum of 𝑝 and 𝑞 which was

stored in the register bank and for 𝑝 substitute the constant

value of 0 or 2, as appropriate. As shown in Equation (2),

these constant values are the first and third entries of the LUT.

 Operation 4(O=”000000”):

The max* calculation of Equation (2) is completed in the

fourth clock cycle by using the operation code O = 000000 of

Table II.Now for operand of 𝑝 use the maximum of of 𝑝 and 𝑞

TABLE 2.OPERATIONS OF ACS UNIT

O Function

000000 𝑟 = 𝑝 + 𝑞

100000 𝑟 = 𝑝 − 𝑞

101100
𝑟 =

𝑝 − 𝑞 𝑖𝑓 𝑝 > 𝑞

 𝑞 − 𝑝 − 0.25 𝑖𝑓 𝑝 < 𝑞

𝐶0 =
0 𝑖𝑓 𝑝 > 𝑞

1 𝑖𝑓 𝑝 < 𝑞

110010
𝑟 =

𝑝 − 𝑞 𝑖𝑓 𝐶0 = 0

 𝑝 − 𝑞 − 0.25 𝑖𝑓 𝐶0 = 1

𝐶1 =
0 𝑖𝑓 𝑟 > 0

1 𝑖𝑓 𝑟 < 0

110001
𝑟 =

𝑝 − 𝑞 𝑖𝑓 𝐶0 = 0

 𝑝 − 𝑞 − 0.25 𝑖𝑓 𝐶0 = 1

𝐶2 =
0 𝑖𝑓 𝑟 > 0

1 𝑖𝑓 𝑟 < 0

as identified by 𝐶0 stored in the register bank and for 𝑞 , it is

selected from the set {0.75, 0.5, 0.25, 0} depending on the

contents of C1 and C2 of Figure 4.As a result, we have

𝑚𝑎𝑥∗ 𝑝, 𝑞 ≈ max 𝑝, 𝑞 +

0.75 𝑖𝑓 𝐶1 = 0,𝐶2 = 0
 0.5 𝑖𝑓 𝐶1 = 0,𝐶2 = 1
0.25 𝑖𝑓 𝐶1 = 1,𝐶2 = 0
0 𝑖𝑓 𝐶1 = 1,𝐶2 = 1

VII. IMPLEMENTATION RESULTS

The Turbo Decoder is synthesized and simulated using

XILINX ISE 13.2.The RTL schematic and simulation wave

window is given here.

Figure 4.Turbo Encoder wave window

Figure 5 .ACS Unit RTL Schematic

1938

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21067

Fig 6 ACS Unit Wave Window

Fig 7 Proposed Architecture RTL Schematic

Figure 8 Proposed Architecture Wave Window

Figure 9. Device Utilization Summary

 CONCLUSION

BCJR algorithm has been ignored for the past 30 years due

to its high complexity in computation .Log BCJR algorithm

due to its reduced complexity have found interest in turbo

codes. The proposed architecture employs fewer magnitude

ACS units which implements the entire LOG-BCJR algorithm

in parallel. The work has been implemented in Virtex-6 FPGA

and simulated in Xilinx ISE 13.2 and its results have been

computed. Results show the reduced delay in processing and

low hardware complexity. A further idea for improving the

design would be to divide the BCJR trellis into a number of

windows that can be processed in parallel using additional

ACS units.

1939

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21067

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit

Error Correcting Coding and Decoding: Turbo Codes,” in Proceedings

of the IEEE International Conference on Communications, vol. 2,
Geneva, Switzerland, 1993, pp. 1064–1070.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

“Wireless sensor networks: a survey,” Computer Networks: The
International Journal of Computer and Telecommunications Networking,

vol. 52, pp. 292–422, 2008.

[3] P. Corke, T. Wark, R. Jurdak, H. Wen, P. Valencia, and D. Moore,

“Environmental Wireless Sensor Networks,” Proceedings of the IEEE,

vol. 98, no. 11, pp. 1903–1917, 2010.

[4] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “An

energyefficient error correction scheme for IEEE 802.15.4 wireless

sensor networks,” Transactions on Circuits and Systems II, vol. 57, no.
3, pp. 233–237, 2010.

[5] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and Sub-Optimal
Maximum A Posteriori Algorithms Suitable for Turbo Decoding,”

European Transactions on Telecommunications, vol. 8, no. 2, pp. 119–

125, 1997.

[6] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G.

Zhou, L. M. Davis, G. Woodward, C. Nicol, and R.-H. Yan, “A unified

turbo/Viterbi channel decoder for 3GPP mobile wireless in 0.18-_m
CMOS,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp.1555–

1564, 2002.

[7] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A

24Mb/s radix-4 Log-MAP turbo decoder for 3GPP-HSDPA mobile
wireless,” in IEEE International Solid-State Circuits Conference, vol. 1,

2003, pp. 150–484.

[8] Z. Wang, “High-Speed Recursion Architectures for MAP-Based Turbo

Decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 15, no. 4, pp. 470–474, 2007.

[9] F.-M. Li, C.-H. Lin, and A.-Y. Wu, “Unified Convolutional/Turbo

Decoder Design Using Tile-Based Timing Analysis of VA/MAP

Kernel,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 10, pp. 1063–8210, 2008.

[10] L. Hanzo, T. H. Liew, B. L. Yeap, R. Tee, and S. X. Ng, Turbo Coding,
Turbo Equalisation and Space-Time Coding. John Wiley & Sons Inc,

2011.

[11] C. M. Wu, M. D. Shieh, C. H. Wu, Y. T. Hwang, and J. H. Chen, “VLSI
Architectural Design Tradeoffs for Sliding-Window Log-MAP

Decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 13, no. 4, pp. 439–447, 2005.

[12] A LowComplexity Turbo Decoder Architecture for Energy-

Efficient Wireless Sensor Networks ,IEEE Transactions on Very Large
Scale Integration (VLSI) Systems Volume: 21 , Issue: 1 ,2013

[13] M. C. Valenti and J. Sun, “The UMTS turbo Code and an Efficient

Decoder Implementation Suitable for Software-Defined Radios,”
International Journal of Wireless Information Networks, vol. 8, no. 4,

pp. 203–215, 2001.

1940

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21067

